
nope: Strengthening Domain Authentication with Succinct Proofs
Zachary DeStefano, Jeff J. Ma, Joseph Bonneau, and Michael Walfish

NYU Department of Computer Science, Courant Institute

Abstract
Server authentication assures users that they are communicat-
ing with a server that genuinely represents a claimed domain.
Today, server authentication relies on certification authorities

(CAs), third parties who sign statements binding public keys
to domains. CAs remain a weak spot in Internet security, as
any faulty CA can issue a certificate for any domain.

This paper describes the design, implementation, and ex-
perimental evaluation of nope, a new mechanism for server
authentication that uses succinct proofs (for example, zero-
knowledge proofs) to prove that a DNSSEC chain exists that
links a public key to a specified domain. The use of DNSSEC
dramatically reduces reliance on CAs, and the small size of
the proofs enables compatibility with legacy infrastructure,
including TLS servers, certificate formats, and certificate
transparency. nope proofs add minimal performance over-
head to clients, increasing the size of a typical certificate
chain by about 10% and requiring just over 1ms to verify.
nope’s core technical contributions (which generalize be-
yond nope) include efficient techniques for representing
parsing and cryptographic operations within succinct proofs,
which reduce proof generation time and memory require-
ments by nearly an order of magnitude.

CCS Concepts: • Security and privacy→Web protocol
security.

Keywords: CAs, DNSSEC, ACME, TLS, succinct proofs, zero-
knowledge proofs, probabilistic proofs, SNARKs

ACM Reference Format:
Zachary DeStefano, Jeff J. Ma, Joseph Bonneau, andMichaelWalfish.
2024. nope: Strengthening Domain Authentication with Succinct
Proofs. In ACM SIGOPS 30th Symposium on Operating Systems Prin-

ciples (SOSP ’24), November 4–6, 2024, Austin, TX, USA. ACM, New
York, NY, USA, 20 pages. https://doi.org/10.1145/3694715.3695962

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSP ’24, November 4–6, 2024, Austin, TX, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11.
https://doi.org/10.1145/3694715.3695962

1 Introduction and motivation
This paper revisits a fundamental requirement of Internet se-
curity: server authentication gives users assurance that when
their browser loads example.com, the response is delivered
by the true owner of the example.com domain.
Today, server authentication relies on Certification Au-

thorities, or CAs. Offline, the server gets a signed certificate

from a CA that attests to the binding between the server’s
public key and its domain. The server sends this certificate to
clients, such as web browsers, during the handshake phase
of a TLS connection; TLS is most familiar as part of HTTPS,
indicated by https:// in the URL. The TLS client then uses
the public key to authenticate the TLS handshake, checking
that the server knows the private key. We will refer to this
public key as the server’s TLS key.
Major weaknesses in the status quo have led to a long

history of failure [10]. A CA that is buggy [8, 27, 86], com-
promised [52, 111], or rogue [87, 121] can issue a certificate
for an attacker-controlled TLS key. Also, any CA can issue
a certificate for any domain, making CAs a “weakest link”
system [4]. Moreover, a web browser by default trusts over
one hundred CAs, multiplying risk.
Finally, even correctly operating CAs can be deceived.

Today, certificate issuance is usually based on domain val-

idation (DV). For example, the highest-volume CA, Let’s
Encrypt [2], uses the ACME DV protocol [15]. In ACME, the
requester (a domain owner) presents a TLS key and receives
a random challenge from the CA. The requester then has to
make that challenge available—either over HTTP at a spe-
cial URL at the given domain, or else in a DNS record—to
demonstrate ownership of the domain. The CA checks for
the challenge and, if it’s present, issues a certificate with
the web server’s TLS key. Notice that DV relies on legacy
unauthenticated protocols (HTTP and DNS), leaving it vul-
nerable to rogue hosting providers [65] or attackers on the
path between the relevant DNS server and the CA [33, 115].

Is it possible to reduce or even eliminate trust in CAs without

introducing additional trusted parties or infrastructure? We
are not the first to ask this question (§9). Among many pro-
posals [31] is a family of protocols originally called dane [14].
These protocols store TLS keys in DNS records and then au-
thenticate these records with DNSSEC [68]. For our purposes,
the most relevant proposal in the dane family is DNSSEC-
chain-extension [40], which we will refer to as dce. With dce,
a web server collects signed statements, which form a chain
from the root’s public key to the web server’s TLS key, and
delivers that chain to the client.

https://doi.org/10.1145/3694715.3695962
https://doi.org/10.1145/3694715.3695962

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

dane protocols replace trust in CAs with trust in DNSSEC.
On the one hand, DNSSEC involves only a few trusted enti-
ties instead of hundreds of CAs. On the other hand, if cryp-
tographic material in DNSSEC is compromised, there is no
way to recover. Ideally, any PKI in this context—based on
CAs, DNSSEC, or anything else—should have mechanisms
for transparency (by which clients and domain owners learn
about issued cryptographic statements) and revocation (by
which domain owners cancel wrongly issued statements).
Indeed, the status quo has an established ecosystem for these
functions [94, 124] (§2.1). But DNSSEC, and hence dane and
dce, have no such infrastructure.
Design goals. What would server authentication that com-
bines the best of both worlds (legacy and DNSSEC-based)
look like? Ideally, it would have the following attributes:
• No single point of failure. Domains should not be vulnera-

ble to the compromise of any individual server.
• Compatibility. Deployed protocols are difficult to change.

Therefore, in contrast to intriguing prior work [17, 39,
43, 80, 84, 133], we prefer solutions that are compatible
with deployed protocols (TLS, ACME, DNS, and DNSSEC)
and require no new infrastructure. Also, upgraded servers
should be able to serve legacy clients; likewise, upgraded
clients should be able to connect to legacy servers.

• Transparency. Domain owners need to monitor all public
keys that can be used for their domain. A natural way
to achieve this given the compatibility goal is to reuse
Certificate Transparency infrastructure [124] (§2.1).

• Revocation. If a cryptographic key is compromised or an
incorrect statement is signed, the domain owner should be
able to recover quickly. As with Transparency, there is es-
tablished infrastructure for Revocation [53, 71, 94] (§2.1).

• Low bandwidth and computational overhead. This means
not adding substantially to the server’s and client’s com-
munication or computation during the TLS handshake.
Adding computation off this critical path is acceptable.

A newmodel: nope. Consider a straw man: domain owners
embed a dane-style signature chain in legacy X.509 certifi-
cates, CAs sign those certificates, and web clients check both
that signature chain and the legacy certificate. This would
avoid a single point of trust, because it retains traditional
certificate validation. However, this design would not meet
the compatibility goal, as we detail later (§2.2).

Instead, we want to somehow embed in legacy certificates
not the DNSSEC signature chain but rather something at-
testing to the existence of such a chain, while barely inflating
the certificate size or contents. Succinct proofs [56] (§2.3)
enable exactly that. These proofs, from complexity theory
and cryptography, have seen burgeoning implementations
and many variants: SNARKs, PCPs, zero-knowledge (ZK)
proofs, interactive proofs, and so on [128, 131]. The setup is
that a prover convinces a verifier that a given computational

statement holds, by delivering an encoded proof. The veri-
fier doesn’t have to step through the statement. Yet, if the
statement doesn’t hold, then the verifier rejects the proof.

This paper describes the design, implementation, and ex-
perimental evaluation of nope (Name Ownership Proved
Efficiently). In nope, the domain owner gathers a chain of
DNSSEC signatures from the root to its own TLS key and
creates a succinct proof that such a chain of DNSSEC signa-
tures exists (§3). The domain owner embeds that proof in a
classical certificate, which is signed by a CA and delivered to
clients as part of the TLS handshake. nope-enabled clients
extract and verify the embedded proof. This meets the design
goals: there is no single point of trust for the same reason as
in the strawman, CAs continue to do what they always have,
and the existing infrastructure for transparency applies to
the enhanced certificates. Legacy revocation works, though
the design must take care to ensure that nope proofs are
invalidated when their enclosing certificate is revoked.
Instantiation. Succinct proofs can be short and efficient to
verify (§2.3). The primary issue in all succinct proof work is
prover efficiency. Statements must be proved using a formal-
ism, arithmetic constraints, in which conceptually simple
operations are often verbose (§4.1). To lower the proving bur-
den, nope introduces new techniques for representing proto-
col parsing (§4.2-§4.3), big-integer modular arithmetic (§5.1),
and elliptic curve operations (§5.2), including ECDSA signa-
ture verification (§5.3). These techniques are broadly relevant
in other uses of succinct proofs. For example, most ZK proofs
that represent cryptographic operations would benefit from
nope’s efficient big-integer arithmetic representation.

We implemented nope (§7) as a server-side tool for creat-
ing proofs and embedding them (§6) in a certificate issued
via ACME. We used this tool to obtain a valid Let’s Encrypt-
signed certificate for a demo server. We also implemented a
Firefox browser extension to extract and verify proofs.

Experimental evaluation (§8) shows minimal performance
impact. Verification in nope costs around 1.5ms if run na-
tively, though when implemented in a browser extension in
Wasm takes about 35ms. nope reduces proving costs from
over 8 minutes naively to under 60 s, and memory costs from
nearly 18GB to under 2GB. Given that servers need only
complete such a proof when a new TLS key is created, this
overhead is manageable even for commodity servers. Raw
proofs are 128 bytes (inherited from nope’s underlying prov-
ing scheme), or 248 bytes encoded in a certificate, which
is expected to add less than 10% of the length of the total
certificate chain.

While any change to core Internet infrastructure requires
a long process to achieve technical consensus, we believe
nope is a meaningful first step toward reducing today’s high
trust requirement in CAs, and an interesting new application
for succinct proofs. In the long run, the ideas in this paper
could facilitate phasing out CAs altogether (§10).

nope: Strengthening Domain Authentication with Succinct Proofs SOSP ’24, November 4–6, 2024, Austin, TX, USA

2 Background
2.1 Server authentication today
TLS, certificates, CAs, ACME. TLS (formerly SSL) is the
dominant protocol for establishing Internet channels that
are secure—meaning confidential, with integrity, and au-
thenticated. TLS is used in many applications: HTTPS, email
(StartTLS), DNS-over-TLS (DoT), and so on.

TLS connections begin with a handshake that typically in-
cludes a certificate in X.509 format [23], signed by a CA. CAs
today mainly perform automated domain validation (DV)
when issuing a certificate (§1). The largest CA, Let’s En-
crypt [2], is fully automated and provides free certificates to
any domain owner. As noted in the introduction, Let’s En-
crypt uses ACME for DV [15] (and in fact developed ACME).
Certificate transparency (CT). Arguably the most signifi-
cant upgrade to the web’s PKI in the last decade is Certificate
Transparency (CT), which records all certificates in public,
append-only logs [124]. These logs have become a crucial
tool for administrators to monitor extant certificates for their
domains so that they can promptly detect any incorrectly
issued certificates and revoke them [53, 71] (see below). Mod-
ern browsers (for example, Chrome, Firefox, Safari) accept
only certificates that have been logged; meanwhile, the stan-
dards [92, 93] require that logs accept only valid X.509 certifi-
cates signed by well-known CAs. Thus, CAs are effectively
gatekeepers that rate-limit what can enter the logs [88, 92].

The relevant mechanics of CT are as follows. Before a CA
issues a certificate, it sends a precertificate to various CT logs;
the precertificate contains almost all of the information that
will be in the final certificate, including the TLS key. The
logs respond with Signed Certificate Timestamps (SCTs): sig-
natures over the precertificate and a timestamp, verifiable by
the logs’ public keys. An SCT is a publicly verifiable promise
by a log to include the certificate in that log within a certain
time frame, called the maximum merge delay (MMD). The
CA then includes these SCTs in the final certificate. Browsers
typically require that certificates contain a minimum number
of SCTs from logs that the browser is configured to trust.
Although the purpose of SCTs is to free clients from having
to query logs themselves, our work will take advantage of
the fact that an SCT also functions as a publicly verifiable
approximate time of certificate issuance (§3.2).
Revocation. For various reasons (key compromise, key loss,
domain transfer), issued certificates may need to be revoked.
Two prominent approaches exist [94]: the Online Certificate
Status Protocol (OCSP) [53] and certificate revocation lists
(CRLs) [71]. Roughly speaking, browsers query OCSP respon-
ders for a signed, timestamped attestation that a certificate
has not been revoked. OCSP responses are typically valid for
3–4 days, limiting the speed of revocation [94, 122]. Explicit
querying can be avoided via OCSP stapling, in which the
server delivers a current OCSP response in-band with the
certificate. With CRLs, by contrast, browser vendors track

lists of revoked certificates and publish summaries, which
clients may take up to 7 days to poll [94, 122]. We note that
OCSP and CRLs are fundamentally built around certificates
and, as with CT, rely on CAs to prevent spam.
Proactive vs. reactive security. One might wonder whether
CT undermines ourmotivation: if domain owners and browsers
can detect misbehavior, do we really need to defend against
the compromise of CAs in a proactive fashion? Yes, because
the reactive nature of CT and revocation leaves a window of
exposure. Rogue certificates can be used by attackers before
detection. In fact, rogue certificates can be used after detec-
tion but before revocation, which typically takes 3–7 days, as
noted above. Furthermore, given the work required to detect
and recover from rogue certificates, it is highly worthwhile
to limit such cases.

2.2 DNS, DNSSEC, dane, and dce
DNS. DNS maps, or resolves, domain names to IP addresses.
There is a hard-coded set of DNS roots, which provide IP
addresses for the authoritative servers for top-level domains
(TLDs), such as .com, .org, and so on. The TLDs provide
IP addresses for the next-level domains, and so on, until
the name server for a domain provides the IP address of a
requested server at the domain.
By default, DNS responses are not authenticated, and

clients may receive bogus DNS records because of malicious
network administrators [66] or cache poisoning [123]. En-
crypted DNS (DoH [69], DoT [72], ODoH [81]) is growing
and is now the default in Firefox, but it hides DNS requests
from network observers; it does not authenticate the con-
tents of responses. There is also increasing use of public DNS
servers (for example, Cloudflare’s 1.1.1.1 or Google’s 8.8.8.8),
but that only moves the point of trust to those organizations.
DNSSEC. A mechanism for authenticating DNS records ex-
ists, and is partially deployed: DNSSEC [68]. DNSSEC em-
beds public keys in the name hierarchy. There is a hard-coded
public key for the root; this key (indirectly) signs public keys
for TLDs, and so on. Note that this Public Key Infrastructure
(PKI) is totally separate from that for TLS.

DNSSEC is a complex protocol. We give a crash course
here, focusing only on what is necessary for this paper. To
begin, every domain has two public keys: a Key Signing Key

(KSK) and a Zone Signing Key (ZSK). (Actually, domains can
have multiple KSKs and ZSKs; for simplicity, we assume a
domain has one of each.) Figure 1 depicts the hierarchical
relationships among KSKs and ZSKs.
Each domain name in DNS is associated with a zone file,

which contains resource records (RRs) with information about
the domain. We are principally concerned with four types of
RRs: TXT, DNSKEY, RRSIG, and DS [113]. A TXT record con-
tains unstructured text data (for example, the challenges used
by ACME; §1). A DNSKEY (Domain Name System Key) record

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

root (.) KSK signs ZSK

signs

com. KSK signs ZSK

signs

example.com. KSK signs ZSK signs TXT

Figure 1. Chain of trust, in DNSSEC, from root to example.com,
through various public keys (KSKs and ZSKs).

contains a public key; domains that implement DNSSEC have
two DNSKEY records, one for the KSK and one for the ZSK.
An RRSIG (Resource Record Signature) record does not

sign a single record (despite its name) but rather a resource
record set (RRset), which is a collection of records of the same
kind. A single RRset can have multiple RRSIG records, each
signed by a different key; for simplicity, we write as if each
RRset is signed by exactly one RRSIG record. The DNSKEY
RRset is signed by the domain’s own KSK. All other RRsets
for a domain are signed by that domain’s ZSK.
A DS (Delegation Signer) record, together with the cor-

responding RRSIG, establishes a chain of trust beyond the
domain. A DS record contains a hash of (specific fields of) a
DNSKEY record that holds a KSK; this KSK belongs to a child
of the domain. This DS record, and its accompanying RRSIG,
mean that a domain’s ZSK attests to a child domain’s KSK.

As an example, we include below some hypothetical snip-
pets of zone files for example.com and its parent (.com). To be
clear, this snippet is made up, and also simplified to remove
fields, including TTL, Class, and others:

--- example.com. zone file snippet ---
1 example.com. TXT "site-verification=...
2 example.com. TXT "acme-challenge=...
3 example.com. TXT "v=spf1 -all...
4 example.com. RRSIG TXT ...
5 example.com. DNSKEY ZSK AwEAAc...
6 example.com. DNSKEY KSK AwEAAc...
7 example.com. RRSIG DNSKEY ...
--- com. zone file snippet ---
8 example.com. DS 8ACBB0...
9 example.com. RRSIG DS ...

Above, there are three TXT records (lines 1–3), the set of
which is signed (4) by the domain’s ZSK (5). There are also
two DNSKEY records, a ZSK (5) and a KSK (6); this set of two
records is signed (7) by the domain’s KSK (6). Finally, there
is a DS record (8), which is signed (9) by the parent domain’s
ZSK (in .com’s zone file).
dane and dce. Since DNSSEC authenticates DNS records,
why not use it to authenticate the correct TLS key for a
domain? This is the idea behind dane [14] (DNS-Based Au-
thentication of Named Entities).

For completeness, we note that dane and DNSSEC ini-
tially had problems: weak cryptographic parameters (early
versions of DNSSEC allowed for MD5 and 512-bit RSA [42],
obsolete even at the time); buggy implementations (many
pairs of RSA keys across different domains shared common
moduli, breaking the security of both [120]); reliability (TLDs
regularly experienced outages during key rollover [73]); and
bandwidth (DNSSEC records are large; §8).

Those shortcomings have been addressed. For security, the
root zone switched from 1024-bit RSA to 2048-bit RSA inmid-
2016, 99.6% of RSA KSKs are now at least 2048 bits, ECC is
used by a significant fraction of sites, MD5 is no longer used,
and SHA-1 is almost entirely unused [37]. Reliability would
be addressed by the server’s gathering DNSSEC records and
delivering them to clients during the TLS handshake, as is
done in dce [40], discussed earlier (§1). Bandwidth is not
ideal but likely tolerable in the web context (although there
are applications, like email, where extra kilobytes for each
connection would balloon the total bandwidth footprint).

The primary deficiency for our purposes is that none of the
dane family of proposals has an obvious solution for trans-
parency or revocation. Consequently, there is no remediation
if a DNSSEC key is compromised or an incorrect record is
signed by mistake, or (in analogy with CA compromise) a
higher-level DNS server such as the TLD is compromised. A
natural question is: why not extend today’s CT and revoca-
tion (§2.1) to DNSSEC chains?
On transparency, CAs are integral to CT, to prevent log

spam (as noted in §2.1). Per RFC 6962, “[current CT] effec-
tively excludes self-signed and DANE-based certificates until
some mechanism to control spam ... is found [92].” Thus, to
use today’s CT with DNSSEC chains, they would have to be
embedded in certificates and submitted to CAs to be signed.
This would require standardizing an X.509 extension and,
more importantly, adoption by CAs. It would also require
modifying CT; meanwhile, such changes require careful en-
gineering, as any bug can invalidate a log permanently [9].

Turning to revocation, DNSSEC does not have revocation
mechanisms equivalent to the status quo. (The closest thing,
RFC5011 [125], is about internal key management, not public
dissemination.) While DNSSEC servers could in principle
revoke their subdomains’ keys, akin to CAs today, this would
require a new mechanism to inform browsers of revocations.

A dce-like approach was trialed in browsers and removed
[85, 88]. There now appears to be no momentum toward
deployment of dce or any other use of dane for TLS, in part
because of the transparency and revocation issues.

2.3 Succinct proofs
A succinct proof (also known as a probabilistic proof) is a
cryptographic protocol between a prover and a verifier, about
a statement, S [56]. S can be thought of as a specification of
a computation, a program, or a logical assertion. S has a
public input X, local input (or witness) W, and output Y.

nope: Strengthening Domain Authentication with Succinct Proofs SOSP ’24, November 4–6, 2024, Austin, TX, USA

X, W, and Y are vectors of variables. The prover wants to
convince the verifier that a specific (X,Y) pair, called an
instance, is valid for S. Valid means that there exists a W
such that S(X;W) = Y.
For example, imagine that X is the hash digest of a large

piece of data, Y is 1/0, and the statement is that the data
contains the string “HELLO”. Then W is the data itself, and
S embeds the logic for: (1) checking if W, which is supplied
by the prover, contains “HELLO”, (2) matching that bit to
Y, and (3) hashing W, and checking if it is equal to X. Via a
succinct proof protocol, the prover can convince the verifier
that the prover knows a witnessW (this guarantee is known
as knowledge soundness). If the prover does not know one,
or no such witness exists, the verifier will reject the alleged
proof (under cryptographic hardness assumptions).

What makes the protocol succinct—and also astonishing—
is that the data flowing from prover to verifier, and the work
required by the verifier, is much smaller than an unrolled
transcript for verifying S would be. In particular, the veri-
fier does not ever handle W. In fact, some protocols send
only a constant amount of data, regardless of the size of S.
Consequently, the verifier is persuaded of the validity of an
(X,Y) pair while doing far less work than would be needed
to re-execute the statement on (X,Y).
Our focus is on non-interactive variants, especially ones

with a zero-knowledge property. Non-interactive means that
the prover and verifier are not coupled: the prover pro-
duces a string 𝜋 that any verifier can check. Zero-knowledge
(ZK) means that W is hidden: an adversarial verifier cannot
abuse the protocol to learn information about part or all
of the witness. A succinct proof that is non-interactive and
zero-knowledge is now known as a zkSNARK [21, 55] (in
the lineage of non-interactive and zero-knowledge proofs,
known as NIZKs [22, 50]). A succinct proof that is not zero-
knowledge is sometimes called verifiable computation [11,
54, 57, 76, 79, 100]. We have presented these definitions in-
formally; precise definitions are available elsewhere [128].

The last 15 years have seen tremendous advances in imple-
mentations of succinct proofs, including ZK proofs [128, 131].
Implementations typically have a front-end and a back-end.
The front-end compiles S into a mathematical representation,
specifically a set of constraints over a finite field (§4.1). The
back-end is the proving and verifying algorithms. The prov-
ing algorithm uses the constraints, X, Y, andW to produce
the proof 𝜋 . The verifier uses the constraints, X, Y to verify
𝜋 , outputting an accept/reject value.

nope’s back-end is Groth16, a zkSNARK [55, 60] in which
the ZK property adds negligible cost. Among ZK protocols,
Groth16 has the shortest proofs and fastest verifier in the
literature, which is why we choose it. Specifically, verifi-
cation costs 1–4 ms on a modern CPU [48], regardless of
statement size (actually, there is a cost that scales with the
size of (X,Y), but it is low-order). The size of the proof 𝜋 is
128 bytes, regardless of statement complexity.

Groth16 has two comparative disadvantages. First, its
prover consumes more computation and memory (§4.1, §8)
than the best in the literature [35, 36, 58, 116, 118]. However,
this is the right trade-off, as servers will compute proofs
rarely and not on latency-sensitive paths; verification, by
contrast, will be on a client’s critical path during page load.

Second, for each statement S, Groth16 requires a one-time
setup: statement-specific work that will be reused over all
future (X,Y) pairs. This step must be executed by a trusted
party; among other reasons, its output contains a trapdoor
that can be used to “prove” even invalid (X,Y) pairs, and
hence must be securely deleted. This requirement is com-
patible with the present context because DNSSEC already
involves a trusted committee (the root key holders) who
regularly perform key-signing ceremonies.

3 Design of nope
3.1 Threat model, security objectives, core protocol
Threat model. The adversary’s goal is to establish a TLS
session with a victim client for a domain that the adversary
does not legitimately control (a domain impersonation attack).
This requires either tampering with traffic that the client sent
to the target server (for example, a malicious WiFi network
administrator or ISP modifying traffic between the client
and server) or redirecting the client’s traffic to the attacker’s
server (for example, using DNS poisoning [123]). Beyond
this baseline capability, there are several avenues of attack;
nope will be designed to tolerate combinations of them but
not all of them together.
A legacy DNS attacker is able to tamper with DNS reso-

lution between a Certificate Authority and a target domain.
The attacker can, therefore, defeat today’s DV, obtaining a
CA signature on a malicious certificate. This attacker inter-
feres with DNS resolution by DNS poisoning [123] of the tar-
get domain’s DNS server, or by spoofing or modifying DNS
responses on the network. Note that this attack is different
than the baseline attacker mentioned above, who modifies
network traffic between a client and a target domain. A sin-
gle domain has arbitrarily many network paths to different
clients, some of which are surely controlled by attackers at
any given time, but only a handful to valid Certificate Au-
thorities. Some CAs also use multi-path probing [3] to make
this attack more difficult.
A CA attacker is able to directly obtain a valid signature

from a CA on arbitrary certificates. For example, the attacker
might be a rogue CA, might steal an honest CA’s private key,
or might exploit a vulnerability to confuse a CA into signing
a certificate that it hasn’t validated. Note that this attacker
is not equivalent to the legacy DNS attacker: while both can
obtain a signature on an invalid certificate, the CA attacker
can also decline to issue revocation statements (§2.1).
A DNSSEC attacker can compromise DNSSEC results for

a target domain, obtaining a valid signature on an arbitrary

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

Client �

Verify
Certificate

10

Verify
nope Proof

11

DNS á

CA ÿ

Domain Owner �

Generate
nope Proof

2

CT õ

Fetch
DNSSEC

1

Request
Challenges3

Post
Challenges4

Verify
Challenges5

Log Pre-
certificate

6

Issue
Certificate

7

Resolve
Domain

8

Deliver
Certificate

9

Connection-time Setup-time

Figure 2. nope protocol. Domain validation steps are in black, steps introduced by nope are in blue, and steps in which the nope proof
travels around the system are surrounded by a dotted blue circle. 1 The domain owner fetches the DNSSEC chain for the DS record for their
domain. 2 The domain owner generates a proof connecting their TLS key to the root. 3 The domain owner requests challenges from the
CA, with the proof embedded in a certificate signing request. 4 The domain owner posts these challenges as DNS records on their domain.
5 The CA verifies these DNS challenges. 6 The CA logs the certificate-to-be. 7 The CA issues the certificate. 8 A client resolves the
domain name to get an IP address. 9 The client connects to the IP address and receives the certificate. 10 The client performs standard
certificate verification. 11 If the client is nope-aware, it detects the nope proof in the certificate and verifies it.

record, for example by stealing DNSSEC keys at the target
domain or any DNSSEC server higher in the hierarchy. This
attack is not the same as attacking legacy DNS (which can
be achieved by a purely network attacker).
A CT attacker can obtain SCTs from some CT log (§2.1)

on arbitrary certificates (potentially without logging them),
by either stealing a CT log’s private key or exploiting a
vulnerability to confuse it.

Finally, we assume that the attacker cannot break standard
cryptographic primitives (for example, forging signatures
without knowing a private key), and cannot compromise
client machines (a compromised client hurts only itself). In
either case, we can make no security guarantees.
Security objectives. Our primary security objective is to
prevent domain impersonation by either a DNSSEC attacker
(which would succeed against dce) or a legacy DNS/CA at-
tacker (which would succeed against traditional certificates).
Our secondary goal is to enable effective detection and recov-
ery if the attacker does successfully impersonate a domain.
Achieving security incrementally, consistent with com-

patibility (§1), requires that servers have a secure method
of advertisement: nope clients need to know that a server
implements nope and that they should not trust non-nope
certificates. Otherwise, an attacker with a rogue certificate
could intercept traffic to a nope-enabled server and pretend
to clients that the server doesn’t support nope (and hence
launder a rogue, non-nope certificate). We discuss mecha-
nisms for advertisement further in Section 6.
Core protocol. Figure 2 depicts nope’s core protocol in two
phases: setup-time (not to be confused with the proof sys-
tem’s trusted setup phase; §2.3), where a domain owner in-
teracts with various parties to bind its TLS key to its domain

name, and connection-time, where the domain owner delivers
a proof of the binding to a user agent (a browser).

At setup-time, the owner of a domain𝐷 fetches theDNSSEC
chain for the DS RRset (§2.2) for𝐷 , produces a proof (§2.3), en-
codes this proof in an ordinary certificate signing request [15,
105], and sends it to an ACME server for signature. The
ACME server is oblivious to the proof, and the ACME proto-
col proceeds as normal, including logging the certificate (§2.1).
At connection-time, once the client resolves a purported

IP address for the domain, it initiates a TLS handshake with
the server and receives the certificate (and a stapled OCSP
response asserting that the certificate has not been revoked
recently). The client first validates the certificate in the legacy
way, verifying the CA signature, expiration date, and so on.
A nope-aware client further extracts the nope proof and
verifies it, using several fields from the certificate, as public
inputs to the proof (§3.2).

Becausenope proofs are embedded in backwards-compatible
X.509 certificates, they can (and must) be logged by existing
CT infrastructure to ensure transparency. Existing revoca-
tion methods for X.509 certificates also continue to work
(but care is required; see details below).
Roadmap. The rest of this section delves into the details
of nope’s proof statement (§3.2) and analyzes nope’s secu-
rity (§3.3). Sections 4 and 5 describe techniques for concisely
representing nope’s proof statement in constraints. This
conciseness makes costs at nope setup-time tolerable (§8).

3.2 Constructing and verifying nope proofs
The core statement, Snope, takes as public input:
• a domain name 𝐷
• the root ZSK for DNSSEC

nope: Strengthening Domain Authentication with Succinct Proofs SOSP ’24, November 4–6, 2024, Austin, TX, USA

• a TLS key 𝑇
• the organization name N of the CA
• a truncated timestamp TS

There is no public output. The statement establishes the
existence of a valid DNSSEC chain of signatures from the
root ZSK to some KSK (§2.2) 𝐾 for 𝐷 , and also establishes
that the private key corresponding to𝐾 , call it𝐾𝑆 , has signed
𝑇 , N , and TS. The purpose of N and TS is to bind the nope
proof to a specific enclosing certificate, as explained later in
this section. The witness includes 𝐾 , 𝐾𝑆 , and the DNSSEC
chain from the root to 𝐾 .

Snope comprises two main parts. The first, DS-knowledge-
of-secret (SDS.K), verifies that (in a sense made more precise
below) 𝐾𝑆 has signed 𝑇 , N , and TS, and connects knowledge
of 𝐾𝑆 to the ZSK of the parent of 𝐷 . SDS.K checks four things:
(1) KSK-knowledge-of-private-key (SKSK.K): The prover knows

𝐾𝑆 , the private key for some public key 𝐾 .
(2) KSK-hash (SKSK.H): 𝐾 hashes to some value 𝐻 .
(3) DS-parse (SDS.P): 𝐻 is contained in a DS record 𝑅 for

domain 𝐷 .
(4) DS-signature (SDS.S): 𝑅 has a signature (RRSIG) that is

validated by a key 𝐾 ′ (presumed to be 𝐷’s parent’s
ZSK).

These checks reduce the claim that a domain 𝐷 owns
some KSK 𝐾 to the claim that the parent of 𝐷 (call it 𝐷 ′)
owns a given ZSK 𝐾 ′. To establish that 𝐷 ′ indeed owns
𝐾 ′, Snope uses its second main part, ZSK-verify. ZSK-verify
reduces a claim that a domain 𝐶 owns a key 𝑍𝑆𝐾𝐶 to the
claim that the parent of 𝐶 owns a different key, 𝑍𝑆𝐾𝑃 . Snope
applies ZSK-verify iteratively, with 𝐶 initially equal to 𝐷 ′.
The iteration ends with a claim about the ZSK of the DNS
root; Snope “directly checks” that last claim, by enforcing
equality between the public root ZSK input and the variables
in the statement that represent the ZSK of the DNS root.

ZSK-verify (SZSK) checks five things:
(1) DNSKEY-parse (SDNSKEY.P):𝑍𝑆𝐾𝐶 is contained in a validly

formatted DNSKEY record on 𝐶 .
(2) DNSKEY-signature (SDNSKEY.S): This DNSKEY record has

a signature (RRSIG) that is validated by some key:𝐾𝑆𝐾𝐶 ,
presumed to be the KSK of 𝐶 .

(3) KSK-hash (SKSK.H): 𝐾𝑆𝐾𝐶 hashes to some value 𝐻 .
(4) DS-parse (SDS.P): 𝐻 is contained in a DS record 𝑅 for

domain 𝐶 .
(5) DS-signature (SDS.S): 𝑅 has a signature (RRSIG) that is

validated by a key 𝑍𝑆𝐾𝑃 .
Digital signatures vs. signatures of knowledge. Notice
that in SDS.K there is no explicit signature of 𝑇 , N , or TS. In
fact, none of these even appear in the logic of the statement!
The advantage of this construction is avoiding the need to
represent signature verification (in this case, using public
key 𝐾) in the statement. The validity of the construction is

that the proof itself [61, 129] is a signature of knowledge [30],
which can be thought of as a stylized signature, by an entity
possessing the entire witness including 𝐾𝑆 , of the inputs to
the proof, including 𝑇 , N , and TS.
For this to work, the proof protocol requires zero knowl-

edge (§2.3); otherwise, an adversarial verifier could gain
information about the witness, including 𝐾𝑆 . A property
called weak simulation extractability [12] is also required.
This ensures that an attacker cannot take a valid proof, con-
structed from 𝑇 , N , and TS, and change it to a new (and
“valid”) proof for a different𝑇 ′, 𝑁 ′, and𝑇𝑆 ′. The back-end of
nope, Groth16 [60], is zero-knowledge by design, and nope
applies a straightforward modification to gain weak simula-
tion extractability [12, 104]. Weak simulation extractability
still allows an attacker to take a valid proof 𝜋 for 𝑇 , N , and
TS and generate a new proof 𝜋 ′ for the same 𝑇 , N , and TS.
We deal with such proof malleability below.
Binding nope proofs to certificates. Existing revocation
mechanisms work with certificates. Thus, we want each
nope proof to be bound to a specific certificate—revoking
that certificate then revokes the nope proof. Ideally, the nope
proof would directly reference the certificate (for example, by
hash or serial number), but this isn’t possible: to be embedded
in the certificate, the proof must be in the certificate request,
so the proof must be materialized first.

This is why N and TS are included in the nope proof state-
ment: they commit the nope proof to an intended certificate.
nope verification rejects proofs in which N and TS do not
match those of the enclosing certificate. A compromised CA
could later issue a certificate with an earlier timestamp (to
match a prior nope proof), but it would significantly differ
from the CT-controlled SCTs in the certificate (§2.1). Thus,
nope clients must also check that the SCT timestamp (ap-
proximately) matches the certificate’s timestamp. Note that
a detected inconsistency could be broadcast as irrefutable
evidence of misbehavior.
Similarly, a compromised CA could, on receiving a valid

certificate signing request with a new nope proof, attempt to
immediately issue multiple certificates with the same proof
(or superficial modifications via proof malleability). Recovery
would require multiple revocations and would be observable
in CT logs as evidence of misbehavior.
A challenge is that the prover cannot predict the precise

issuance time of the certificate, owing to variable latency in
domain validation by the CA. To address this, the domain
owner truncates TS to within a few minutes.
Verifying a nope proof. The client runs the back-end veri-
fier against the proof 𝜋 (extracted from the certificate), the
proof statement Snope, and the input to the proof statement.
This input is the root ZSK, the domain name 𝐷 , the TLS
key 𝑇 , canonical name N of the CA, and time TS. The client
extracts the latter three from the certificate itself; the client
performs the same truncation of TS as described above.

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

Attacker Subset (§3.1) Domain Impersonated Time to Detect Can be Revoked
Legacy DNS CA CT DNSSEC DV DV+ dce nope DV DV+ dce nope DV DV+ dce nope

– – – – No No No No – – – – Yes Yes No Yes
ÿ – – – Yes No No No ≤ 24h – – – Yes Yes No Yes
– ÿ – – Yes Yes No No ≤ 24h ≤ 24h – – No No No No
ÿ ÿ – – Yes Yes No No ≤ 24h ≤ 24h – – No No No No
– – ÿ – No No No No – – – – Yes Yes No Yes
ÿ – ÿ – Yes No No No > 24h – – – Yes Yes No Yes
– ÿ ÿ – Yes Yes No No > 24h > 24h – – No No No No
ÿ ÿ ÿ – Yes Yes No No > 24h > 24h – – No No No No
– – – ÿ No No Yes No – – ∞ – Yes Yes No Yes
ÿ – – ÿ Yes Yes Yes Yes ≤ 24h ≤ 24h ∞ ≤ 24h Yes Yes No Yes
– ÿ – ÿ Yes Yes Yes Yes ≤ 24h ≤ 24h ∞ ≤ 24h No No No No
ÿ ÿ – ÿ Yes Yes Yes Yes ≤ 24h ≤ 24h ∞ ≤ 24h No No No No
– – ÿ ÿ No No Yes No – – ∞ – Yes Yes No Yes
ÿ – ÿ ÿ Yes Yes Yes Yes > 24h > 24h ∞ > 24h Yes Yes No Yes
– ÿ ÿ ÿ Yes Yes Yes Yes > 24h > 24h ∞ > 24h No No No No
ÿ ÿ ÿ ÿ Yes Yes Yes Yes > 24h > 24h ∞ > 24h No No No No

Figure 3. Analysis of subsets of attackers (§3.1). Domain Impersonated indicates whether the attackers can fool a client into believing
that they are the domain owner. Time to Detect indicates the time that it takes for evidence of the attack to be visible in transparency logs
(∞ indicates that no such evidence is produced). Can be Revoked indicates whether proactive TLS key revocation is possible; without it, the
domain owner must, in the event of an attack, wait for the attacker’s certificate or signed DNSSEC records to expire.

nope-managed. So far, nope has assumed that the domain
owner knows the private key for their KSK. But some domain
owners outsource the administration of their DNSSEC keys
to a managed DNS provider. A variant called nope-managed
handles this case; it is described in Appendix A.

3.3 Analysis
We compare nope to DV and dce, under various attack-
ers (§3.1). We also compare to domain validation bolstered by
requiring DNSSEC proofs in addition to legacy DNS queries,
which we call DV+. Figure 3 summarizes.
No single point of failure. nope can be thought of as a
“belt-and-suspenders” approach, with clients performing two
independent validity checks on a server’s TLS key. Achieving
domain impersonation undernope requires both a fraudulent
certificate (which a legacy DNS attacker or CA attacker is
capable of) and obtaining fraudulent DNSSEC records for
the nope proof (which a DNSSEC attacker is capable of).
This is a strictly better security guarantee than DV (which is
vulnerable to a legacy DNS/CA attacker), DV+ (vulnerable
to a CA attacker), or dce (vulnerable to a DNSSEC attacker).

One might ask if the same outcome could be achieved by
having two different CAs sign a certificate. The main issue
(beyond consolidations in the CA industry that sometimes
obscure common operations of ostensibly distinct CAs [7,
41]) is that nearly all CAs employ similar DNS-based DV, so
any attacker that could fool one could very likely fool two.
Detection and recovery. Even in the event of a successful
domain impersonation attack, nope provides transparency

and revocation equivalent to the status quo (§1). This is
strictly better than dce, which sacrifices both.
For transparency, nope proofs must be included in a cer-

tificate included in a CT log. In the absence of a CT attacker,
this ensures any domain impersonation will be detectable
within the MMD (§2.1) of 24 hours (equivalent for DV, DV+,
and nope). If domain impersonation is combined with a CT
attacker—if, that is, all or nearly all attacker types are in
effect, with the CT attacker issuing an SCT but neglecting to
log the rogue certificate—then there is no guarantee of detec-
tion for any of the systems. (A fallback in this case is a victim
client performing SCT auditing [99], but web browsers do
not do so by default today.)

DV, DV+, andnope enable revocation unless the certificate-
issuing CA is compromised; that CA can refuse to issue re-
vocation statements. Blocking revocation thus requires the
attacker to compromise a specific CA, not an arbitrary one.

4 Representing DNS parsing efficiently
This section describes techniques for efficiently representing
parsing operations in proof statements. This parsing occurs
in SDNSKEY.P (for DNSKEY records) and SDS.P (for DS records),
but we expect the techniques to apply to other uses of suc-
cinct proofs. Next, we describe the compilation target.

4.1 R1CS
Various proof back-ends (§2.3), including the one that nope
uses (Groth16 [60]), require statements to be compiled, by
the front-end, to a rank-one constraint system (R1CS), which
we sometimes refer to as constraints. Our description of R1CS

nope: Strengthening Domain Authentication with Succinct Proofs SOSP ’24, November 4–6, 2024, Austin, TX, USA

here borrows heavily from Zombie [134]. An R1CS instance
is a system of equations (over a finite field, F). An instance
has𝑚 equations (or constraints), 𝑛 variables, and matrices 𝐴,
𝐵, 𝐶 , each of dimension𝑚 × 𝑛. We say that a specific (X,Y)
pair (§2.3) satisfies the instance if there exists some W such
that, for 𝒛 defined as (X,Y, 1,W), we have:𝐴𝒛◦𝐵𝒛 = 𝐶𝒛, with
◦ denoting entry-wise multiplication. Unpacking the algebra,
each constraint 𝑖 ∈ {1, . . . ,𝑚} restricts any satisfying 𝒛 =

(𝑧1, . . . , 𝑧𝑛) as follows: (𝐴𝑖,1𝑧1 + · · · +𝐴𝑖,𝑛𝑧𝑛) · (𝐵𝑖,1𝑧1 + · · · +
𝐵𝑖,𝑛𝑧𝑛) = (𝐶𝑖,1𝑧1 + · · · +𝐶𝑖,𝑛𝑧𝑛). The proof 𝜋 then convinces
the verifier that (X,Y) satisfies the R1CS instance and that
the prover knowsW.

The primary metric for the efficiency of an R1CS represen-
tation is number of constraints,𝑚; that is because the prover’s
costs scale with𝑚 · log𝑚 (from manipulating degree-𝑚 poly-
nomials) and the constant is large (§8.2). Proof verification
and proof size were quantified earlier (§2.3).

Unfortunately, R1CS is not a natural way to express com-
putation. Loops must be unrolled; each iteration compiles
to separate variables in the constraints. Representing con-
ditional flow requires separate constraints for each branch.
Comparisons and bitwise operations are expensive. More
generally, every statement in a program has to be arithme-
tized, sometimes requiring further variables [25, 26, 110, 117,
119, 130, 136]. Emulating RAM also brings cost [19, 26, 82,
109, 130]; this applies to any situation in which the index
into an array isn’t known at compile time.

4.2 Framework and motivation
For our purposes, parsing means taking a long message, al-
legedly in a specific format, and extracting a given field from
a location. Neither the length of the field nor the location is
known at compile-time.

Consider, for example, what has to happen in nope’s proof
statements. Recall that SDNSKEY.P involves a claimed DNSKEY
RRset for a domain𝐶 and a key 𝑍𝑆𝐾𝐶 (§3.2). The correspond-
ing constraints have to extract the type covered field to
check that the claimed RRset is really a DNSKEY RRset. They
also have to extract the rrname and key fields from an RR
that is itself extracted from the RRset, to ensure that the
RR is for the claimed domain 𝐶 and that 𝑍𝑆𝐾𝐶 is contained
in the RRset. Similarly, SDS.P must validate the contents of
various fields, and check that the claimed DS RRset for a
given domain indeed is a DS RRset, indeed is for the claimed
domain, and indeed contains the claimed hash.
But it is not a priori clear how to encode these tasks in

R1CS efficiently. DNS parsing seemingly calls for control
flow and RAM, and naively translates to an unpalatably large
number of constraints (§4.1). Instead, nope creates a general
procedure for expressing parsing operations in R1CS:
(1) scan performs a linear pass over a stringmsg to identify

the start of fields of a given type; it returns the start of
an arbitrarily chosen field of that type. No such prior
primitive that targets constraints exists in the literature.

scan costs only 4 constraints per-byte of the string,
given length-prefixed formats.

(2) slice takes a string msg and a starting point 𝑖 , and re-
turns a substring (of statically-known length) start-
ing at 𝑖 . nope’s slice improves on existing slice primi-
tives [13, 130] (for example, quadratic to quasi-linear
or linear, with a smaller constant).

(3) mask takes a string and, starting at a dynamically-given
location, zeroes out all of the bytes. nope’s mask im-
proves on existing mask primitives [13, 34] by a loga-
rithmic factor in the length of the input string.

These primitives are intended to be composed: by applying
scan, then slice, then mask, the constraints themselves can
parse out a field of a desired type, as well as perform the other
tasks listed in the motivating example. To communicate a
flavor of the primitives, we present the details for mask, the
simplest of the three. Appendix B details slice and scan.

4.3 Mask primitive
The signature of mask is mask<𝐿>(arr, ℓ). It takes an array
of length 𝐿 and returns an array of the same length with the
bytes beyond index ℓ zeroed. The angle brackets (<>) indicate
that 𝐿 is known at compile-time, which enables loops to be
unrolled. A possible implementation is the following:
1: procedure maskNaive<𝐿>(arr, ℓ)
2: for 𝑖 = 1 to 𝐿 do
3: res[𝑖] ← (𝑖 ≤ ℓ ? arr[𝑖] : 0)
4: return res

This procedure, compiled to R1CS, costs 𝐿 · (2 + ⌈log𝐿⌉)
constraints; the log term comes from the ≤ comparison (§4.1).

nope instead introduces three lightweight “sub-primitives”
and composes them to achieve the same effect. The first is
mapNonZeroToZero(x): if 𝑥 is non-zero, return 0, and if 𝑥 is
zero, return any value (including possibly zero). This sub-
primitive compiles to a single R1CS constraint: 𝑥 · 𝑧 = 0,
where 𝑧 is the return value. Notice that if 𝑥 is non-zero, then
𝑧 must be 0, but if 𝑥 is 0, then 𝑧 can be anything.

The second sub-primitive is indicator<𝐿>(𝑖). Given an in-
dex 𝑖 , indicator returns an array of length 𝐿 with all 0s except
for a 1 at index 𝑖:
1: procedure indicator<𝐿>(𝑖)
2: 𝑠𝑢𝑚 ← 0
3: for 𝑗 = 1 to 𝐿 do
4: res[𝑗] ← mapNonZeroToZero(𝑗 − 𝑖)
5: 𝑠𝑢𝑚 += res[𝑗]
6: constrain 𝑠𝑢𝑚 == 1
7: return res

This works because only at 𝑗 = 𝑖 can mapNonZeroToZero

return a non-zero value, and that value is forced to 1 by
line 6, which translates to a single constraint that enforces
the equality. The total cost of indicator is 𝐿 + 1 constraints:
one for each mapNonZeroToZero and one for line 6.

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

The third sub-primitive is suffixSum<𝐿>(arr). Given an
array arr of length 𝐿, return an array res of length 𝐿 with
res[𝑖] equal to the sum of arr[𝑗] for all 𝑗 greater than or
equal to 𝑖 . It is implemented as follows:
1: procedure suffixSum<𝐿>(arr)
2: 𝑠𝑢𝑚 ← 0
3: for 𝑖 = 𝐿 down to 1 do
4: 𝑠𝑢𝑚 += arr[𝑖]
5: res[𝑖] ← 𝑠𝑢𝑚

6: return 𝑠𝑢𝑚
Perhaps surprisingly, this sub-primitive costs no constraints!

To see why, imagine a constraint variable 𝑧∗ that is supposed
to be equal to

∑𝐾
𝑘=1 𝑑𝑘𝑧𝑘 , where the 𝑑𝑘 are constants known

at compile time, and the 𝑧𝑘 are variables within the con-
straints. Naively this could be expressed with a constraint
in R1CS format: 𝑧∗ = (1) · (𝑑1𝑧1 + · · ·). But the compiler
can replace any occurrence of 𝑧∗ anywhere else in the R1CS
instance (in the “A”, “B”, or “C” part of a constraint) with the
linear combination; doing so only changes the coefficients of
the 𝑧𝑘 in the constraint(s) where the substitution takes place,
while preserving R1CS form. The general point is that linear
combinations do not cost constraints. Meanwhile, above, for
each 𝑖 , res[𝑖] is a linear combination of elements in arr.
mask<𝐿>(𝑎𝑟𝑟, ℓ) is now implemented as follows:

1: procedure mask<𝐿>(arr, ℓ)
2: ℎ ← suffixSum<L>(indicator<𝐿>(ℓ))
3: for 𝑖 = 1 to 𝐿 do
4: res[𝑖] ← 𝑎𝑟𝑟 [𝑖] · ℎ[𝑖]
5: return res

Notice thatℎ has the form (1, 1, . . . , 1, 0, 0, . . . , 0); the component-
wise multiplication of arr and ℎ then ensures that res[𝑖] con-
tains what it would in maskNaive. The total cost of mask is
2 ·𝐿+1 constraints, an asymptotic and concrete improvement
over maskNaive.

5 Representing cryptography efficiently
With nope’s parsing techniques (§4) in place, signature ver-
ification contributes the majority of the constraints in the
compiled R1CS representation (§4.1). Signature verification
occurs in SDS.S and SDNSKEY.S (§3.2). This section describes
three sets of techniques for reducing those costs.
As context, DNSSEC uses the RSA [77] and ECDSA [70]

cryptosystems; the most common parameter choices (RSA
with SHA-256 and ECDSA with curve P-256 [102]) account
for 96% of all TLDs (of the 1513 TLDs in the root zone, 1331
use RSA and 129 use ECDSA) [32], and over 99.9% of all
domains globally [38]. ECDSA uses ECC (elliptic curve cryp-
tography). ECC has traditionally been costly in constraints
because of the complexity of elliptic curve operations and the
difficulty of performing big-integer arithmetic in constraints.

The first set of techniques (§5.1) applies to any cryptosys-
tem with modular arithmetic of large numbers, including
RSA and ECDSA. The second set of techniques (§5.2) applies
to elliptic curve (EC) cryptosystems generally; the third (§5.3)

applies to a subset of EC cryptosystems, including ECDSA.
The latter techniques lower the cost of ECDSA to be within
a small constant multiple of RSA (§8.3).

5.1 Big-integer arithmetic
Cryptography often deals with big numbers. Typically, soft-
ware represents such numbers as vectors 𝒙 = (𝑥 [0], . . . , 𝑥 [𝑁]).
In this section we write such vectors as row vectors, 0-
indexed. Each component of 𝒙 is a digit in a base-𝑏 rep-
resentation. A common value for 𝑏 is 𝑏 = 232, which al-
lows each component to fit comfortably in a 64-bit machine
word. (It may be helpful to visualize 𝑏 as something much
smaller, like 10; then the vector is the digits of the base-10
representation, in reverse order.) The numerical value of 𝒙
is val(𝒙) = ∑𝑁

𝑖=0 𝑥 [𝑖] · 𝑏𝑖 . Each component of this vector
representation is called a limb.

Cryptographic operations are often over a field F𝑞 , so arith-
metic is performed modulo a prime 𝑞 In this case, 𝒙 must
be interpreted as a member of F𝑞 : mval𝑞 (𝒙) =

∑𝑁
𝑖=0 𝑥 [𝑖] ·

𝑏𝑖 mod 𝑞. Naively, arithmetic in F𝑞 , known as modular oper-
ations, require division by 𝑞 to compute remainders. There
are improvements [16, 89, 101], but they are still far more
expensive than non-modular operations.
In constraints, a large number is a vector of limbs, with

each component being an element in F (the field that the
constraints are defined over; §4.1). Usually F is different from
F𝑞 , the field for the actual computation. In the state of the
art [82], the cost of amod operation scaleswith the number of
bits in 𝑞, unlike multiplication, which scales with the number
of limbs (but can result in intermediate values larger than 𝑞).
The distinction is an order of magnitude: whereas 𝑞 typically
has 256 bits with intermediate computations commonly on
512- or 768-bit numbers, 𝑁 = 16 and 𝑁 = 24 respectively
assuming the base 𝑏 = 232.

nope’s approach is to explicitly allow intermediate values
in F𝑞 to have an unorthodox representation. For 𝑖 = 0, . . . , 𝑁 ,
choose𝒎𝒊 as a vector with 𝑆 limbs so that val(𝒎𝒊) ≡ 𝑏𝑖 mod
𝑞. Notice that although 𝑏𝑖 can be far larger than 𝑞,𝒎𝒊 can be
chosen so that val(𝒎𝒊) < 𝑞. Next, stack these row vectors:
𝒎0,𝒎1, . . . ,𝒎𝑵 . Call the resulting (𝑁 + 1) × 𝑆 matrix𝑀 . It
follows from the definitions that mval𝑞 (𝒙 ·𝑀) = mval𝑞 (𝒙).
So, instead of using a traditional mod operation to reduce
the size of 𝒙 from 𝑁 + 1 to 𝑆 limbs, nope uses vector-matrix
multiplication with 𝑀 . As with the traditional mod oper-
ation, multiplying by 𝑀 results in a vector with 𝑆 limbs
and preserves the equivalence class of the original num-
ber (when interpreted mod 𝑞). Unlike the traditional mod
operation, multiplying by 𝑀 does not add any constraints.
That is because 𝑀 is pre-computed, vector-matrix multi-
plication (with a constant matrix) becomes a collection of
linear combinations, and linear combinations contribute no
constraints (§4.3).

Here is a worked example, using ordinary arithmetic. Take
𝑏 = 10 and 𝑞 = 89. One can precompute the rows of 𝑀 by

nope: Strengthening Domain Authentication with Succinct Proofs SOSP ’24, November 4–6, 2024, Austin, TX, USA

taking the limb representations of 10𝑖 mod 89 for 𝑖 = 0, . . . , 4
and stacking them to get the following.

01 ≡ 100 mod 89

10 ≡ 101 mod 89

11 ≡ 102 mod 89

21 ≡ 103 mod 89

32 ≡ 104 mod 89 𝑀 =

1 0
0 1
1 1
1 2
2 3

Now, consider the number 51277. In limb form, it is 𝒙 =

[7, 7, 2, 1, 5]. But 𝒙 ·𝑀 = [20, 26]. The required equivalence
holds: mval89 (𝒙 · 𝑀) = mval89 (𝒙). Meanwhile, 𝒙 · 𝑀 , with
2 limbs, is considerably smaller than 𝒙 , which has 5 limbs.
Notice that 𝒙 · 𝑀 and 𝒙 are not equivalent in “val” terms:
val(𝒙 ·𝑀) is 280, not 51277. Also notice that padding 𝒙 ·𝑀
with zeros and multiplying by𝑀 again is idempotent.

This approach yields massive savings versus the tradi-
tional mod in constraints: whereas mod, recall, has costs
proportional to the number of bits in the modulus 𝑞 (typi-
cally 256–768 bits for ECDSA, 2048–4096 bits for RSA), this
approach costs no constraints. The gain dramatically out-
weighs the cost, which is that the number of bits in each limb
do not reduce, and thus the constraints require a periodic
“clean” operation to prevent limbs from overflowing in F.

5.2 Faster elliptic curve operations
Background on elliptic curves. See elsewhere [127] for a
proper treatment. For our purposes, an elliptic curve (EC) is a
special “point at infinity,” denoted O, together with all points
(𝑥,𝑦) over a finite field F𝑞 (the integers modulo a prime 𝑞)
that satisfy 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑞, for some fixed 𝑎, 𝑏 ∈ F𝑞 .
We sometimes write an EC point P as (𝑥P, 𝑦P).

An EC is equipped with a group operation, written as “+”.
The additive identity is O; the additive inverse of (𝑥,𝑦) is
(𝑥,−𝑦). We describe this operation for the case that neither
addend is the identity and the addends are not inverses. If
P ≠ Q, the sum P + Q → R has a geometric interpretation:
draw a line between P and Q, find the point (call it −R)
where that line intersects the curve, and then reflect it over
the x-axis to get R. This operation is called point addition.
When P = Q, the geometric interpretation of P + P → R
is: draw a line tangent to the curve at P, find the point −R
where that line intersects the curve and reflect it over the
x-axis to get R. This operation is called point doubling. Given
a scalar 𝑘 and a point P, we write P added to itself 𝑘 times
as 𝑘 · P; this operation is called scalar multiplication.

Given𝑤 (scalar, point) pairs (𝑘𝑖 ,P𝑖), computing
∑𝑤
𝑖=1 𝑘𝑖P𝑖

is called a multi-scalar multiplication (MSM). This operation
frequently arises in EC cryptosystems. Even with existing
techniques for computing MSM efficiently, MSM induces
many point additions and doublings. For example, ECDSA
signature verification (§5.3) requires an MSM with 2 points
and 256-bit scalars and can induce over 500 point operations,
each of which involves multiple operations over F𝑞 .

Point addition and point doubling can be computed alge-
braically. For example, for point addition:

𝑠 ≡ (𝑦Q − 𝑦P) · (𝑥Q − 𝑥P)−1 mod 𝑞

𝑥R ≡ 𝑠2 − 𝑥P − 𝑥Q mod 𝑞
𝑦R ≡ 𝑠 · (𝑥P − 𝑥R) − 𝑦P mod 𝑞

nope’s techniques. In constraints, the state of the art repre-
sentation requires, for point addition, 23 modular multiplica-
tions and 2 modular equality checks, and for point doubling,
12modularmultiplications and 2modular equality checks [1].
This representation rearranges the algebraic formulas for
computing addition and doubling, to avoid inversion and cut
a single modular equality check.
nope’s approach is to return to the geometric interpreta-

tion. In nope, P + Q (P ≠ Q) requires the prover to supply
R to the constraints. The constraints then check that P, Q,
and −R are collinear, and that R is actually on the curve.
This amounts to two checks:

(𝑦Q − 𝑦P) (𝑥R − 𝑥Q) + (𝑦R + 𝑦Q) (𝑥Q − 𝑥P) ≡ 0 mod 𝑞

𝑦2R − 𝑥
3
R − 𝑎 · 𝑥R − 𝑏 ≡ 0 mod 𝑞

The cost is 5 multiplications and 2 modular equality checks,
down from 23 and 2 above. For point doubling the constraints
check that the slope between P and −R is the same as the
slope of the curve at P and that R is on the curve, which
amounts to replacing the first check above with:

(3𝑥2P + 𝑎) (𝑥R − 𝑥P) − 2𝑦P (𝑦R + 𝑦P) ≡ 0 mod 𝑞

Point doubling now costs 6 multiplications and 2 modular
equality checks, down from 12 and 2.

(We have simplified; the constraints also have to prevent
adding inverses together or adding by O.)

5.3 Fewer EC operations in ECDSA
An ECDSA private key is a 256-bit scalar 𝑑 (providing 128
bits of security). The public key is defined as Q := 𝑑 · G,
where G is a generator of the curve. Checking a signature
involves checking an operation R = ℎ0 · G + ℎ1 · Q, where
R, ℎ0 and ℎ1 are derived from the message and the signature.
This operation requires a 256-bit MSM (§5.2). To represent
it efficiently, nope exploits a transformation to a 128-bit
MSM [5, 51]. In non-constraint contexts, this transformation
is usually not worthwhile because it involves an expensive
computation to identify side information. nope observes that
it is worthwhile to do that computation outside constraints,
with the constraints validating the side information. This
saves 2× in constraints for each signature verification. More
detail, including several other refinements, is in Appendix C.

6 Protocol considerations
Proof delivery. Satisfying the compatibility goal (§1) re-
quires embedding a nope proof within a standard X.509
certificate. CAs do not allow arbitrary data in certificates.
X.509 does support extension fields, but IANA would have

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

to approve an extension, and CAs would have to adopt it. In-
stead, nope encodes the proof as a subdomain in the Subject
Alternative Name (SAN), which appears to be the only field
of a certificate that carries minimally-constrained requester-
specified data. This field is typically used to create one certifi-
cate that contains related domain names (say, example.com
and example.org). Appendix D details the encoding.
Advertisement. nope requires an advertisementmechanism
(§3.1). A simple approach is pinning, in which clients store a
policy that certain domains must use nope. Mobile applica-
tions often already pin a limited set of trusted CAs [106], and
browsers preload CA pins for high-value sites [83]. HSTS [67]
is used to dynamically pin an HTTPS-only policy for sites on
a trust-on-first-use basis. Any of these could be extended to
require nope support for a limited period. In the longer term,
browsers could sunset support for non-nope certificates in
several steps, starting with warning about non-nope certifi-
cates issued after a certain date, and eventually dropping
support for non-nope certificates.

7 Implementation
Proofs. nope’s back-end (§2.3) uses two implementations of
Groth16 [60], described below. nope’s front-end (§2.3) uses
the Circom [74] language and compiler. The statements in
nope comprise 3419 lines of Circom code and 176 lines of
C++ code that synthesizes additional Circom code.
Server-side. We implemented a tool for domain owners
to automatically generate nope certificates. This tool is a
wrapper around the existing ACME Certbot [45] scripts; it
also passes the nope proof statements (see above) to zkU-
til’s [112] interface into the bellman [98] implementation
of the Groth16 prover. Given the domain name, a TLS key,
and the DNSSEC private key for the domain’s KSK, the tool
produces a nope proof, encodes it in a certificate signing
request (§6), and performs the ACME challenge-response
protocol with Let’s Encrypt (§2.1) to obtain a legacy cer-
tificate that embeds a nope proof. The tool is 370 lines of
Python, 72 lines of JavaScript, and 85 lines of Bash.
Client-side. We implemented an extension for Firefox. We
chose Firefox because it is the only current browser that
allows extensions to read raw certificate data and override
the default certificate verification process; however, this is
not fundamental. The extension is triggered on startup (to
fetch the root ZSK) and whenever the browser begins a TLS
connection. The extension contains a parser to extract nope
proofs; it also contains a Groth16 verifier inWasm, originally
from SnarkJS [75] and modified by us, to enhance perfor-
mance. The extension comprises 780 lines of JavaScript.

8 Experimental evaluation
We aim to answer these questions experimentally:
(1) What is the connection-time impact of nope on up-

graded and non-upgraded clients and servers?

Server Client Bandwidth time (JS) time (native)

Legacy Legacy 2554 B 0.3 (± 0.1) ms 0.3 ms
Legacy nope 2554 B 0.3 (± 0.1) ms 0.3 ms
nope Legacy 2783 B 0.3 (± 0.1) ms 0.3 ms
nope nope 2783 B 34.9 (± 2.2) ms 1.5 ms

dce dce 5-6 KB 1.1 (± 0.2) ms 0.7 ms

Figure 4. Client-side costs to verify a server’s authenticity. The
nope client (native) adds tolerable overhead. The nope client (JS)
suffers from a lack of native support for the cryptographic opera-
tions that nope depends on. Italicized values are estimates derived
from isolated native costs for various cryptographic operations. The
nope-legacy configurations show that nope does not add material
overhead when the counterparty is not nope-aware.

(2) What are the costs of nope certificate issuance? And
how do they compare to the setup-time costs associated
with unmodified ACME?

(3) How effective are nope’s techniques (§4–§5) at reduc-
ing the cost of nope certificate issuance?

(4) How does the encoded nope proof compare in size to
other components of a TLS certificate?

Experimental setup. We use a proof statement for a second-
level domain; pessimistically all DNSSEC keys are ECDSA
(since it is costlier; §8.3) except the root’s ZSK, which is
always RSA. As the domain owner of nope-tools.org, we
create a proof that binds this domain to its TLS key.

Client-side, we measure the nope extension (§7) and a na-
tive implementation of Groth16 verification [24]. Baselines
are JavaScript (JS) versions of legacy certificate validation
and dce [40] (§1, §2), and native implementations of the re-
quired cryptography. The JS baselines use the Node.js crypto
module with a library that we wrote. The crypto module is
equivalent to the Web Crypto API in the browser, and accel-
erates certain operations using native code. Our library per-
forms certificate validation, and we wrote it because existing
Node.js packages with equivalent function perform cryptog-
raphy only in JS; by contrast, ours invokes native functions,
which is more generous to the status quo. For native, we
estimate the non-nope systems by microbenchmarking the
requisite cryptographic operations using OpenSSL [107] and
counting the number of such operations. All benchmarks
are run on a Google Cloud [59] e2-highmem-2 machine on a
single thread with 16GB of RAM.

8.1 Impact on client latency in TLS handshake
We consider five (server, client) configurations: {legacy server,
nope server} × {legacy client, nope client} plus dce server
with dce client. We consider JS and native client versions.

We start the clock when the client has the certificate or
signature chain in hand, and stop the clock when the client is
convinced that the server is authentic. For each configuration,
we measure this verification time 10,000 times, reporting

https://www.nope-tools.org

nope: Strengthening Domain Authentication with Succinct Proofs SOSP ’24, November 4–6, 2024, Austin, TX, USA

0 15 30 45 60 75 90
Wall clock time (seconds)

nope Proof Generation

ACME Initiation

DNS Propagation

ACME Verification

Figure 5. Timeline of the nope protocol (ACME included). Bars are
labeled for each major step in the protocol. nope Proof Generation
is 1–2 from Figure 2, ACME Initiation is 3, DNS Propagation is the
time between 4 and 5, and ACME Verification is 6.

the average and standard deviation (displayed in ±) after
removing 1% of outliers. Figure 4 depicts the results.
The JS implementation of the nope client performs the

worst, because there is no native support for the crypto-
graphic operations in the Groth16 verifier (§7). Given a na-
tive implementation, nope would contribute roughly 1.2ms
(1.5 − 0.3) above the existing costs for certificate validation.

The JS and native implementations of legacy certificate
checking are very close, because the JS extensions leverage
browsers’ built-in capabilities for handling classical certifi-
cates. Similarly, the dce JS and native versions are on the
same order, because, even from JS, the cryptographic opera-
tions that are required by dce have native support.

8.2 Costs of nope certificate issuance
Are the costs of certificate issuance reasonable for a low-
resource domain owner? We compare nope to ACME, mea-
suring the time that a server needs to get a valid certificate
from Let’s Encrypt (LE) for nope-tools.org. Rate-limited
by LE, we run five trials of the ACME protocol (DNS01 chal-
lenge), and report the average time. We configure nope to
use a single thread, and measure the proof generation time,
taking the average of 100 iterations. For all of the bench-
marks, we assume that updating DNS records has no cost,
but that these records take 30 seconds to propagate (the
default propagation delay for Certbot [45]).
Figure 5 depicts the results. nope proof generation is the

most computationally intensive step, requiring 35–55 sec-
onds on a single thread and just under 2GB of RAM. This is
obviously dramatically larger than the required computation
under ACME. The additional latency from nope is about 3×
as long as ACME, and could be lowered by configuring the
nope prover for parallelism. However, a typical domain will
need to pay this cost only 4 times a year.

8.3 Effect of nope’s constraint representations
We evaluate the impact of the design choices in Section 3 and
the techniques in Section 4 and 5. We focus on𝑚, the number
of constraints (§4.1) to represent the proof statement. We
begin by approximating the number of constraints needed to

Techniques 𝑚 (×106) time memory

Baseline (§8.3) 10.15 486 s 17.80 GB
+ design (§3) 5.33 255 s 9.35 GB
+ parsing (§4) 3.60 173 s 6.32 GB
+ crypto (§5) 1.19 57 s 2.09 GB
+ misc. 1.13 54 s 1.99 GB

Figure 6. Effects of nope’s techniques on the constraint represen-
tation (𝑚 is the number of constraints; §4.1) and costs to generate
a proof. Italicized numbers indicate estimates using a mix of calcu-
lated and measured constraint data.

Component Actual Bytes Percentage

Certificate Chain 2554 100.0%
Intermediate Certificate 1290 50.5%
Subscriber Certificate 1264 49.5%
Certificate metadata 174 6.8%
Subject name 14 0.5%
Subject public key 294 11.5%
Extensions 534 20.9%

OCSP (§2.1) 89 3.5%
SCT (§2.1) 264 10.3%
Other 181 7.1%

Signature 248 9.7%

Raw nope proof (§2.3) 128 5.0%
Encoded nope proof (§6) 248 9.7%

dce (§1, §2.2) [40] 5870 229.8%

Figure 7. Decomposition of a certificate chain for nope issued
by Let’s Encrypt for domain nope-tools.org. OCSP refers
to a revocation-related field (specifically for the authority
information access extension [23]) and does not include the
size of the OCSP response if present.

encode a statement that associates a TLS key with a DNSSEC
chain, using the best-known techniques prior to nope. Then
we introduce nope’s techniques. For each number of con-
straints, we use an experimentally derived model relating𝑚
to real performance, to estimate the time and memory for
the server to generate a proof. Figure 6 depicts the results.

In total, nope’s techniques lower the cost of proof gener-
ation by nearly 9×. It is not directly depicted, but our tech-
niques (§5.1–§5.3) reduce the cost of ECDSA by about 4.5×,
taking it from nearly 17× more expensive than RSA to only
3–4×. Additionally, nope’s parsing costs become negligible
compared to the cryptographic operations.

8.4 nope in the certificate chain
Using asn1parse [108], we measure the communication
overhead of nope’s proof (both raw and encoded in the cer-
tificate), comparing to legacy certificates and a full DNSSEC
chain, as transmitted according to the dce specification [40].
Figure 7 depicts the results. The nope proof is comparable
in size to other certificate components.

https://www.nope-tools.org
https://www.nope-tools.org

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

8.5 Summary
nope has a performance cost, but it is tolerable. Using the
extension, clients need ∼35ms of processing time to verify
the certificate and contained nope proof (when present) in
JS. A native implementation would reduce this number by
roughly 23× (§8.1). The domain owner requires orders of
magnitude more computation to create a nope proof than
to participate in ACME, but the absolute cost is well within
the capabilities of lower-end machines (§8.2), after applying
nope’s techniques (§8.3). Furthermore, this cost is required
only when the server requests a new certificate, which is
typically not latency-sensitive. Compared to dce, nope im-
poses less bandwidth but more computation; the latter is
the price of compatibility with existing infrastructure. A fi-
nal point of comparison is additional trusted modules. nope
trusts that the proof compiler, proof statements, and verifier
implementation are correct while dce adds DNSSEC parsing
and validation code to the browser.

9 Other related work
CA replacement proposals. Security researchers have at-
tempted to bolster or replace the CA model almost continu-
ously since the development of HTTPS [31, 47].

One line of work is reactive, aiming to detect rogue certifi-
cates after the fact. Early efforts included client-side multi-
path probing [18, 96, 132] and crowd-sourced certificate
scanning [44]. This led to a line of work on transparency,
including Certificate Transparency (CT) [92, 93] (§2.1), Sover-
eign Keys [43], AKI [80], ARPKI [17], and Revocation Trans-
parency [91]. Of these, only CT has real-world traction.
The other line of work is proactive, aiming to prevent

rogue certificates by retaining CAs but restricting the set of
CAs that can issue certificates for a given domain, including
CAge [78], TACK [97] and key-pinning (HPKP [49]). These
approaches (unlike nope, dane, and dce) risk “domain brick-
ing”, in which a mistaken overly-restrictive policy prevents
a site from being accessible. CAge and TACK were never
deployed. HPKP was deployed in Chrome in 2013, but lim-
ited uptake [83] and frequent domain bricking [64] caused
support to be dropped by 2018. (Chrome and Mozilla still
include a small number of preloaded key pins.)
Succinct proofs in networked systems. nope works in an
emerging tradition of applying succinct proofs to legacy net-
work protocols to improve security or enable new function-
ality. Like nope, these works must parse network payloads
and encode “legacy” cryptographic operations that have not
been designed to be constraint-friendly.

Cinderella [34] is perhaps most related to nope. Cinderella
uses zero-knowledge proofs to free clients from having to
receive a full X.509 certificate chain. In Cinderella, the server
proves that a valid chain exists, saving bandwidth and com-
putation, and opening up new use cases like anonymous

credentials. Cinderella and nope could be combined, by en-
hancing the proof statement to show, for example, the exis-
tence of an X.509 certificate that contains a nope proof. In
representing certificate parsing in R1CS, Cinderella faces an
analogous problem to one of nope’s (§4). Cinderella merges

instead of parses (these are inverses), but its approach is cur-
rently quadratic; nope’s techniques would make this linear.
Works in the ZKMB paradigm [62, 95, 134] prove that

encrypted traffic complies with network usage policy. The
performance requirements are different: they must compute
proofs in near real-time whereas nope’s proofs are computed
infrequently (§3).
DECO [135], DiStefano [28], DIDO [29] and Janus [90]

use proofs to provide transferable attestations from interac-
tions with a TLS server. Several other lines of work aim to
build non-interactive or anonymous credentials out of ex-
isting protocols, including SMTP (email) [63], Open ID Con-
nect [6, 13, 103], JSON [137], and e-Passports [114]. Many of
these works face analogous string manipulation challenges
to nope’s. As examples, string manipulation primitives in
zkLogin [13] are quadratic, and IDEA-DAC [137] achieves
linear complexity but requires instantiating a random ora-
cle in R1CS. nope’s techniques would improve the concrete
performance of these works by several orders of magnitude.

10 Concluding discussion
Putting aside the challenges of compatibility, transparency,
and revocation (§1), one could potentially use the techniques
developed for nope to wean the web off of CAs completely.
While it would mean reverting to a new single point of trust,
DNSSEC instead of CAs, there are advantages to doing so:
DNS is already essential for the Internet, and DNSSEC trust
is hierarchical (no single server beyond the carefully guarded
root has authority over all domains). Indeed, we hope our
work might revitalize interest in DNSSEC.

In the end, building consensus to deploy any security
protocol that affects the entire Internet is never an easy
process, but we offer the nope proposal to the community for
several reasons: to improve on it, to disseminate techniques
that may be of general interest, and to revive discussion
about CA replacement in the era of succinct proofs, which
open new design points that are worth exploring.

The code for nope is available at
https://github.com/PepperSieve/nope.

Acknowledgements. Kevin Choi contributed to the conception
and development of the project. This paper was improved by dis-
cussions with, and suggestions by, Benedikt Bünz, Jeremy Clark,
Quang Dao, Paul Grubbs, Brad Karp, Aurojit Panda, Justin Thaler,
our shepherd Nickolai Zeldovich, and the anonymous reviewers.
This work was supported by DARPA under Cooperative Agreement
HR00112020022, NSF CNS-2239975, and a gift from Google. Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of any supporting organization.

https://github.com/PepperSieve/nope

nope: Strengthening Domain Authentication with Succinct Proofs SOSP ’24, November 4–6, 2024, Austin, TX, USA

A nope-managed
nope-managed (§3) makes two changes versus nope. First,
the proof statement is somewhat larger, which affects only
costs at setup-time (roughly, twice as expensive for the
prover). Second, nope-managed doesn’t require zero knowl-
edge (§2.3), only succinctness, as no secret information enters
the proof.
Instead of proving knowledge of the private key, the do-

main owner writes a hash of their TLS public key, TS, and N

to a TXT record and then creates a proof of the existence of
a valid DNSSEC chain of signatures to this record.
The proof statement. nope-managed’s proof statement
(Snope-managed) is similar to Snope, but with SDS.K replaced by
STXT. STXT checks two things:
(1) TXT-parse (STXT.P): The hash of the TLS public key𝑇 , TS,

and N is contained in a validly formatted TXT record 𝑅
on domain 𝐷 .

(2) TXT-signature (STXT.S): 𝑅 has a signature (RRSIG) that
is validated by a key 𝐾 ′, presumed to be the ZSK of 𝐷
itself.

STXT ties the contents of a TXT record to a specific key 𝐾 ′.
The next step is verifying that 𝐾 ′ is a ZSK for 𝐷 . This is done
by repeatedly applying SZSK from Snope, which ultimately
reduces the claim about 𝐷’s ZSK to claim about the root ZSK.
For example, STXT lifts a claim about the contents of a

TXT record in example.com to a more general claim about
example.com. Next, SZSK lifts this claim about example.com
to a claim about .com. Applying SZSK again lifts a claim about
.com to a claim about the root.

B Other string primitives in constraints
B.1 nope’s string slicing primitive
mask isolated a variable-length prefix from a fixed-length
buffer. Here, we present slice, which extracts this fixed-length
buffer from a much larger buffer containing the original
message. The signature of slice is slice<𝑀 , 𝐿>(msg, 𝑖). This
is a function that takes a buffer msg of length𝑀 and returns
a buffer arr of length 𝐿 that starts at index 𝑖 in msg. This
function is templated by the lengths of the input and output
buffers𝑀 and 𝐿 respectively, as both are known at compile
time.

The (simplified) naive implementation of slice is as follows:
1: procedure sliceNaive<𝑀, 𝐿>(msg, 𝑖)
2: for 𝑗 ∈ [1, 𝑀 − 𝐿] do
3: res[𝑗] ← msg[𝑖 + 𝑗]
4: return res

Because 𝑖 is not known at compile time, this requires em-
ulating RAM in constraints. There are two ways to do this.
(1) Techniques for emulating RAM that require 𝑂 ((𝑀 +

𝐿) · log(𝑀 + 𝐿)) constraints [130].
(2) A scan technique that requires𝑀 · 𝐿 constraints and is

asymptotically worse but has smaller constants [13].

The first approach is typically preferred when 𝐿 is small
relative to𝑀 .

As an alternative, nope introduces a lightweight primitive
with linear complexity and small constants, and then chains a
logarithmic number of these primitives together to construct
a more efficient version of slice. This primitive, condshift,
has the signature condshift<𝑀 , 𝐷>(msg, flag). Given a buffer
msg of length𝑀 , and a Boolean flag flag, this function returns
a buffer res of length𝑀 with two possibilities:
(1) If flag is 0, res is a copy of msg.
(2) If flag is 1, res is msg shifted left by 𝐷 .
This is implemented as follows:

1: procedure condShift<𝑀,𝐷>(msg, flag)
2: res← ∅
3: for 𝑖 ∈ [1, 𝑀 − 𝐷] do
4: res[𝑖] ← (flag ? msg[𝑖 + 𝐷] : msg[𝑖])
5: for 𝑖 ∈ [𝑀 − 𝐷,𝑀] do
6: res[𝑖] ← (flag ? 0 : msg[𝑖])
7: return res

The total cost of this procedure is 𝑀 constraints: each
ternary can be compiled to a single constraint.

nope implements slice<𝑀 , 𝐿>(msg, 𝑖) by repeatedly apply-
ing condshift. The implementation looks like the following:
1: procedure slice<𝑀, 𝐿>(msg, 𝑖)
2: arr← msg

3: bits← toBinary(1 + log𝑀) (𝑖)
4: # iterate down from 1 + log M to 1
5: for 𝑗 ∈ [1 + log𝑀, 1] do
6: # reachable prefix length
7: 𝑀′ ← min(𝐿 + 2𝑗 − 1, 𝑀)
8: # conditional shift by 2 ∗ ∗(𝑗 − 1)
9: 𝑆 ← 2𝑗−1
10: # if the jth bit of i is set
11: arr← condshift<𝑀′, 𝑆>(arr, bits[𝑗])
12: return arr

toBinary is a standard function which converts an integer
to an array of bits (and costs 2 + log𝑀 constraints). The
complexity of this primitive requires careful cost analysis,
but the worst case cost is𝑀 log(𝑀) + log(𝑀) + 2 constraints,
an asymptotic and concrete improvement over the naive
implementation. For small 𝐿, this effectively becomes 𝑂 (𝑀)
constraints with a small constant.
It is possible to fully eliminate the log𝑀 term in some

cases by packing adjacent array elements into a single field
element. This looks like the following:
1: procedure sliceAndPack<𝑀, 𝐿>(msg, 𝑖)
2: arr← msg

3: bits← toBinary(1 + log𝑀) (𝑖)
4: # iterate down from 1 + log M to 1
5: for 𝑗 ∈ [1 + log𝑀, 1] do
6: # reachable prefix length
7: 𝑀′ ← min(𝐿 + 2𝑗 − 1, 𝑀)
8: # conditional shift by 2 ∗ ∗(𝑗 − 1)
9: 𝑆 ← 2𝑗−1

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

10: # if the jth bit of i is set
11: arr← condshift<𝑀′, 𝑆>(arr, bits[𝑗])
12: # merge adjacent elements
13: for 𝑘 ∈ [1, 𝑀′] do
14: arr[𝑘] ← arr[2 · 𝑘 − 1] + arr[2 · 𝑘]
15: return arr

This reduces the cost to just under 2 ·𝑀 + log(𝑀) + 2 con-
straints, but the final output is in a different (packed) format.
Depending on the application, this additional optimization
may or may not be useful.

B.2 nope’s string scan primitive
slice isolated a fixed length buffer from a much larger buffer.
but this requires knowing where to start the extraction. To
find this location, we describe a recipe for implementing
scan. This recipe generalizes to any length-prefixed format.

The signature of scan is scan<𝑀>(msg, start, . . .). This is a
function that takes a buffer msg of length𝑀 and checks that
start is actually the start of a field of a certain type. start is a
private input that is computed outside of the constraints and
supplied as part of the witness (W) to be checked. The “. . .”
at the end of the signature leaves room for additional inputs
depending on context. This function returns the length of
the field that starts at start.

Below, we present a toy example of what DNS RRsets look
like for the purposes of exposition. These toy DNS RRsets
consist of a header followed by a sequence of records. The
header is a variable-length domain name field, and records
are triples of the following format:
(1) a 1-byte length field
(2) a 1-byte type field
(3) a variable-length data field
We will consider the case where an application needs to

scan for the initial index (and length) of an arbitrary record
in the RRset to be fed into slice and mask.
Given the public length of the domain name (and thus

the header), called headerlen, a private index start, and a
private buffer msg of length𝑀 , nope introduces a function
scanToyRRset that scans for the start of a record as follows.
1: procedure scanToyRRset<𝐿>(msg, start, headerlen)
2: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← headerlen

3: 𝑙𝑒𝑛 ← 0
4: 𝑙𝑜𝑐 ← indicator<𝑀>(start)
5: for 𝑖 ∈ [1, 𝑀] do
6: # counter is only 0 when
7: # 𝑖 is at the start of a record.
8: # loc is only non-zero when 𝑖 == start.
9: # start must be the start of a record
10: constrain 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 * 𝑙𝑜𝑐 [𝑖] == 0
11: # read length (but only if 𝑖 == start)
12: 𝑙𝑒𝑛 ← 𝑙𝑒𝑛 +msg[𝑖] ∗ 𝑙𝑜𝑐 [𝑖]
13: # if we are at the start of a record
14: # read the length and reset the counter
15: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← (𝑐𝑜𝑢𝑛𝑡𝑒𝑟 == 0 ? msg[𝑖] : 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) − 1

16: return 𝑙𝑒𝑛
This procedure requires 4 ·𝑀 + 1 constraints. It verifies

that start is the start of a record, thus validating the input
to slice. This procedure also provides the true length of the
record, which is necessary for mask.

Unlike this toy RRset, real DNS RRsets have length fields
longer than 1 byte and more fields; however, the same me-
chanics presented here apply.

C Fewer EC point operations in ECDSA
Recall (§5.3) that an ECDSA public key is a point, Q, on the
elliptic curve; the private key is a 256-bit scalar 𝑑 (providing
128 bits of security). The public key is defined: Q := 𝑑 · G,
where G is a generator of the curve. Let 𝑛 be the order of the
generator.

As a simplification, let the ECDSA signature for a message
msg be 𝜎 = (R, 𝑠). Additionally, let 𝐻 (msg) be the hash of
msg. This signature is verified in three steps:

compute: ℎ0 ← 𝑠 · 𝐻 (msg) mod 𝑛
compute: ℎ1 ← 𝑠 · 𝑥R mod 𝑛

check: R = ℎ0 · G + ℎ1 · Q
The costliest operation here is the final step, the 256-bit

multi-scalar multiplication (MSM; §5.2). If the prover can
find a 128-bit scalar 𝑣 such that ℎ1 ·𝑣 mod 𝑛 is small, then the
256-bit MSM can be transformed into a 128-bit MSM [5, 51].
Such a 𝑣 always exists; however, normally finding this 𝑣 is
not worth the effort. The main idea that makes it worthwhile
for nope is that the prover can find 𝑣 outside of constraints.
Then, the constraints check that 𝑣 has the desired property,
and check a 128-bit MSM instead of a 256-bit MSM. This
saves nearly 2× in constraints. The overheads outside of
constraints are swamped by the savings in constraints.

In more detail, givenH := 2128G precomputed offline, the
prover uses the extended Euclidean algorithm to find a non-
zero 𝑣 such that ℎ1 ·𝑣 mod 𝑛 and 𝑣 can each be represented in
128 bits. Then, the third step in signature verification (above)
becomes:

check: 0 < 𝑣 < 2128

compute: 𝑡 ← ℎ0 · 𝑣 mod 𝑛

compute: 𝑣0 ← 𝑡 mod 2128

compute: 𝑣1 ← ⌊𝑡/2128⌋
compute: 𝑣2 ← ℎ1 · 𝑣 mod 𝑛

check: 𝑣2 < 2128

check: O = 𝑣0 · G + 𝑣1 · H + 𝑣2 · Q − 𝑣 · R (3)
Checking the conditions on 𝑣 and 𝑣2, and computing 𝑡 , 𝑣0, 𝑣1,
and 𝑣2 are relatively inexpensive. The final step is a 128-bit
MSM, which is far less expensive than a 256-bit MSM.

nope applies two other refinements. First, the MSM trans-
formation [5, 51] uses the Straus method [126] (see also [20,
46]), in which a kind of basis is precomputed to accelerate the

nope: Strengthening Domain Authentication with Succinct Proofs SOSP ’24, November 4–6, 2024, Austin, TX, USA

computation of 𝑣𝑖 ·P, whereP stands in for each of the points
in the MSM in equation (3). Although this method seemingly
involves point additions and point doublings (§5.2), nope
replaces all point doublings with point additions. Second,
point addition naively includes some cost, to handle the case
that a sum produces the point at infinity. nope shows how
to avoid that point, thereby shedding the constraint logic
that would have to check and adjust for this case.

D SAN encoding example
To encode the 128-byte proof into the Subject Alternative
Name (SAN) field of an X.509 certificate, nope uses a base-37
encoding, which fits the proof into 197 hostname characters.
nope adds one character for versioning, another for meta-
data, and a final character for a checksum. The resulting
200 characters are split into four 50-character labels, (<a>,
, <c>, <d>). For particularly long domains, nope spreads
these labels across multiple SANs, but for most domains this
is not necessary. Each nope SAN is prefixed with a nope
identifier n0pe. that is incremented in the multi-SAN case
to indicate the order of the SANs (n0pe., n1pe., etc.). For
a short domain, it might look like

n0pe.<a>..<c>.<d>.<short domain>

For a longer domain, it might look like

n0pe.<a>..<long domain>
n1pe.<c>.<d>.<long domain>

For example, the full nope SAN for example.commight look
like:

n0pe.06o6kheobgzqj52omigylyk-ec3vzrbmtg42k5eaj
l8ykitd8j.g8t96eylete226olso-tnde03iu461rzguro
wlimiqh2t8r47l.o8mjcv20g9vdxrcdzzlbo63nc7ldyqg
ndocum5ct3i4vzdelgv.9ury0kwu2o-d6ns06ow9zihqak
gqpusuyqcmj8zjauc45f171t.example.com

References
[1] 0xPARC. circom-ecdsa. https://github.com/0xPARC/circom-ecdsa,

2022.
[2] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Ecker-

sley, Alan Flores-López, J Alex Halderman, Jacob Hoffman-Andrews,
James Kasten, Eric Rescorla, Seth Schoen, and Brad Warren. Let’s
Encrypt: an automated certificate authority to encrypt the entire web.
In ACM CCS, 2019.

[3] Josh Aas, Daniel McCarney, and Roland Shoemaker. Multi-
Perspective Validation Improves Domain Validation Security. Let’s
Encrypt Blog, Feb 2020. https://letsencrypt.org/2020/02/19/multi-

perspective-validation.html.
[4] Ross Anderson and Tyler Moore. The Economics of Information

Security. Science, 314(5799), 2006.
[5] Adrian Antipa, Daniel Brown, Robert Gallant, Rob Lambert, René

Struik, and Scott Vanstone. Accelerated verification of ECDSA signa-
tures. In Selected Areas in Cryptography, pages 307–318, 02 2005.

[6] Aptos Keyless. Aptos Labs, 2024. https://aptos.dev/guides/keyless-
accounts/.

[7] Hadi Asghari, Michel Van Eeten, Axel Arnbak, and Nico ANM van
Eijk. Security economics in the HTTPS value chain. InWEIS, 2013.

[8] Andrew Ayer. Duplicate Signature Key Selection Attack in Let’s
Encrypt. https://www.agwa.name/blog/post/duplicate_signature_

key_selection_attack_in_lets_encrypt, December 2015.
[9] Andrew Ayer. How Certificate Transparency Logs Fail and Why It’s

OK. https://www.agwa.name/blog/post/how_ct_logs_fail, July 2021.
[10] Andrew Ayer. Timeline of Certificate Authority Failures. https:

//sslmate.com/resources/certificate_authority_failures, 2024.
[11] László Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy.

Checking Computations in Polylogarithmic Time. In ACM STOC,
1991.

[12] Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov.
Another look at extraction and randomization of Groth’s zk-SNARK.
In Financial Crypto (FC), 2021.

[13] Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Yan Ji, Jonas Lind-
strøm, Deepak Maram, Ben Riva, Arnab Roy, Mahdi Sedaghat, and
Joy Wang. zkLogin: Privacy-Preserving Blockchain Authentication
with Existing Credentials. arXiv preprint arXiv:2401.11735, 2024.

[14] Richard Barnes. Use Cases and Requirements for DNS-Based Authen-
tication of Named Entities (DANE). RFC 6394, October 2011.

[15] Richard Barnes, Jacob Hoffman-Andrews, Daniel McCarney, and
James Kasten. Automatic Certificate Management Environment
(ACME). RFC 8555, March 2019.

[16] Paul Barrett. Implementing the Rivest Shamir and Adleman Public
Key Encryption Algorithm on a Standard Digital Signal Processor.
In Annual International Cryptology Conference, 1986.

[17] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf
Sasse, and Pawel Szalachowski. ARPKI: Attack resilient public-key
infrastructure. In ACM CCS, 2014.

[18] Adam Bates, Joe Pletcher, Tyler Nichols, Braden Hollembaek, and
Kevin RB Butler. Forced perspectives: Evaluating an SSL trust en-
hancement at scale. In IMC, 2014.

[19] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza.
Succinct non-interactive zero knowledge for a von Neumann archi-
tecture. In USENIX Security, 2014.

[20] Daniel J. Bernstein. Pippenger’s exponentiation algorithm. 2002.
[21] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From

extractable collision resistance to succinct non-interactive arguments
of knowledge, and back again. In ITCS, 2012.

[22] Manuel Blum, Paul Feldman, and Silvio Micali. Non-Interactive Zero-
Knowledge and its Applications. In ACM STOC, 1988.

[23] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen
Farrell, and David Cooper. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC 5280,
May 2008.

[24] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and
Arya Tabaie. Consensys/gnark: v0.11.0, September 2024.

[25] Benjamin Braun. Compiling computations to constraints for verified
computation. UT Austin Honors thesis HR-12-10, December 2012.

[26] Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath Setty, An-
drew J. Blumberg, and Michael Walfish. Verifying computations with
state. In ACM SOSP, 2013.

[27] Matthew Bryant. Keeping Positive – Obtaining Arbitrary Wildcard
SSL Certificates from Comodo via Dangling Markup Injection. The
Hacker Blog, July 2016. https://thehackerblog.com/keeping-positive-

obtaining-arbitrary-wildcard-ssl-certificates-from-comodo-via-

dangling-markup-injection/.
[28] Sofía Celi, Alex Davidson, Hamed Haddadi, Gonçalo Pestana, and Joe

Rowell. Distefano: Decentralized infrastructure for sharing trusted
encrypted facts and nothing more. Cryptology ePrint Archive, Paper
2023/1063, 2023. https://eprint.iacr.org/2023/1063.

[29] Kwan Yin Chan, Handong Cui, and Tsz Hon Yuen. DIDO: Data
Provenance from Restricted TLS 1.3 Websites. In IPSEC, 2023.

[30] Melissa Chase and Anna Lysyanskaya. On Signatures of Knowledge.
In CRYPTO, 2006.

https://github.com/0xPARC/circom-ecdsa
https://letsencrypt.org/2020/02/19/multi-perspective-validation.html
https://letsencrypt.org/2020/02/19/multi-perspective-validation.html
https://aptos.dev/guides/keyless-accounts/
https://aptos.dev/guides/keyless-accounts/
https://www.agwa.name/blog/post/duplicate_signature_key_selection_attack_in_lets_encrypt
https://www.agwa.name/blog/post/duplicate_signature_key_selection_attack_in_lets_encrypt
https://www.agwa.name/blog/post/how_ct_logs_fail
https://sslmate.com/resources/certificate_authority_failures
https://sslmate.com/resources/certificate_authority_failures
https://thehackerblog.com/keeping-positive-obtaining-arbitrary-wildcard-ssl-certificates-from-comodo-via-dangling-markup-injection/
https://thehackerblog.com/keeping-positive-obtaining-arbitrary-wildcard-ssl-certificates-from-comodo-via-dangling-markup-injection/
https://thehackerblog.com/keeping-positive-obtaining-arbitrary-wildcard-ssl-certificates-from-comodo-via-dangling-markup-injection/
https://eprint.iacr.org/2023/1063

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

[31] Jeremy Clark and Paul C Van Oorschot. SoK: SSL and HTTPS: Revis-
iting past challenges and evaluating certificate trust model enhance-
ments. In IEEE Security and Privacy, 2013.

[32] Cloudflare. ECDSA: The missing piece of DNSSEC. https://

www.cloudflare.com/dns/dnssec/ecdsa-and-dnssec/.
[33] Tianxiang Dai, Haya Shulman, and Michael Waidner. Let’s Down-

grade Let’s Encrypt. In ACM CCS, 2021.
[34] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and

Bryan Parno. Cinderella: Turning shabby X. 509 certificates into ele-
gant anonymous credentials with the magic of verifiable computation.
In IEEE Security and Privacy, 2016.

[35] Benjamin E. Diamond and Jim Posen. Succinct arguments over towers
of binary fields. Cryptology ePrint Archive, Paper 2023/1784, 2023.

[36] Benjamin E. Diamond and Jim Posen. Polylogarithmic proofs for
multilinears over binary towers. Cryptology ePrint Archive, Paper
2024/504, 2024.

[37] DNSSEC and DANE Deployment Statistics. https://stats.dnssec-

tools.org/, 2024.
[38] Domain name registrations in Generic TLDs. https:

//domainnamestat.com/statistics/tldtype/generic, 2024.
[39] Huayi Duan, Rubén Fischer, Jie Lou, Si Liu, David Basin, and Adrian

Perrig. RHINE: Robust and High-performance Internet Naming with
E2E Authenticity. In NSDI, 2023.

[40] Viktor Dukhovni, Shumon Huque, Willem Toorop, Paul Wouters, and
Melinda Shore. TLS DNSSEC Chain Extension. RFC 9102, August
2021.

[41] Zakir Durumeric, James Kasten, Michael Bailey, and J Alex Halder-
man. Analysis of the HTTPS certificate ecosystem. In IMC, 2013.

[42] Donald E. Eastlake. RSA/SHA-1 SIGs and RSA KEYs in the Domain
Name System (DNS). RFC 3110, May 2001.

[43] Peter Eckersley. Sovereign Keys: A proposal to make HTTPS and
email more secure. www.eff.org/sovereign-keys, 2011.

[44] Peter Eckersley and Jesse Burns. An Observatory for the SSLiverse.
DEFCON, 2010.

[45] Electronic Frontier Foundation. Certbot. https://github.com/certbot/

certbot, 2024.
[46] ElGamal, Taher. A Public Key Cryptosystem and a Signature Scheme

Based on Discrete Logarithms. In CRYPTO, 1985.
[47] Carl Ellison and Bruce Schneier. Ten risks of PKI: What you’re not

being told about public key infrastructure. Computer Security Journal,
16(1), 2000.

[48] Jens Ernstberger, Stefanos Chaliasos, George Kadianakis, Sebastian
Steinhorst, Philipp Jovanovic, Arthur Gervais, Benjamin Livshits, and
Michele Orrù. zk-Bench: A Toolset for Comparative Evaluation and
Performance Benchmarking of SNARKs. Cryptology ePrint Archive,
Paper 2023/1503, 2023. https://eprint.iacr.org/2023/1503.

[49] Chris Evans, Chris Palmer, and Ryan Sleevi. Public Key Pinning
Extension for HTTP. RFC 7469, April 2015.

[50] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO, 1986.

[51] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster
point multiplication on elliptic curves with efficient endomorphisms.
In CRYPTO, 2001.

[52] Eva Galperin, Seth Schoen, and Peter Eckersley. A Post
Mortem on the Iranian DigiNotar Attack. EFF DeepLinks Blog,
2011. https://www.eff.org/deeplinks/2011/09/post-mortem-iranian-

diginotar-attack.
[53] Slava Galperin, Dr. Carlisle Adams, Michael Myers, Rich Ankney,

and Ambarish N. Malpani. X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP. RFC 2560, June 1999.

[54] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive
verifiable computing: Outsourcing computation to untrusted workers.
In CRYPTO, 2010.

[55] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In IACR

Eurocrypt, 2013.
[56] Oded Goldreich. Probabilistic proof systems – a primer. Foundations

and Trends in Theoretical Computer Science, 3(1), 2008.
[57] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Dele-

gating computation: interactive proofs for muggles. J. ACM, 62(4),
2015.

[58] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and
Riad S. Wahby. Brakedown: Linear-time and field-agnostic SNARKs
for R1CS. In CRYPTO, 2023.

[59] Google. Google cloud. https://cloud.google.com/compute/docs/

general-purpose-machines, 2024.
[60] Jens Groth. On the size of pairing-based non-interactive arguments.

In IACR Eurocrypt, 2016.
[61] Jens Groth and Mary Maller. Snarky Signatures: Minimal Signatures

of Knowledge from Simulation-Extractable SNARKs. In CRYPTO,
pages 581–612. Springer International Publishing, 2017.

[62] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael
Walfish. Zero-Knowledge Middleboxes. In USENIX Security, 2022.

[63] Aayush Gupta. ZK Email, 2024. https://blog.aayushg.com/zkemail/.
[64] Scott Helme. I’m giving up on HPKP. https://scotthelme.co.uk/im-

giving-up-on-hpkp/, 2017.
[65] Encrypted traffic interception on Hetzner and Linode targeting

the largest Russian XMPP (Jabber) messaging service. https://

notes.valdikss.org.ru/jabber.ru-mitm/, November 2023.
[66] Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub Dalek, Jeffrey

Knockel, Pellaeon Lin, Bill Marczak,Masashi Crete-Nishihata, Phillipa
Gill, and Michalis Polychronakis. How Great is the Great Firewall?
Measuring China’s DNS Censorship. In USENIX Security, 2021.

[67] Jeff Hodges, Collin Jackson, and Adam Barth. HTTP Strict Transport
Security (HSTS). RFC 6797, November 2012.

[68] Paul E. Hoffman. DNS Security Extensions (DNSSEC). RFC 9364,
February 2023.

[69] Paul E. Hoffman and Patrick McManus. DNS Queries over HTTPS
(DoH). RFC 8484, 2018.

[70] Paul E. Hoffman and Wouter Wijngaards. Elliptic Curve Digital
Signature Algorithm (DSA) for DNSSEC. RFC 6605, April 2012.

[71] Russ Housley, Tim Polk, Dr. Warwick S. Ford, and Dave Solo. Internet
X.509 Public Key Infrastructure Certificate and CRL Profile. RFC 2459,
January 1999.

[72] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels,
and Paul E. Hoffman. Specification for DNS over Transport Layer
Security (TLS). RFC 7858, 2016.

[73] Major DNSSEC Outages and Validation Failures. IANIX, March 2024.
https://ianix.com/pub/dnssec-outages.html.

[74] iden3. Circom, Circuit Compiler. https://github.com/iden3/circom,
2024.

[75] iden3. snarkjs. https://github.com/iden3/snarkjs, 2024.
[76] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without

short PCPs. In IEE Conference on Computational Complexity (CCC),
2007.

[77] Jelte Jansen. Use of SHA-2 Algorithms with RSA in DNSKEY and
RRSIG Resource Records for DNSSEC. RFC 5702, October 2009.

[78] James Kasten, Eric Wustrow, and J Alex Halderman. CAge: Taming
certificate authorities by inferring restricted scopes. In Financial

Crypto (FC), 2013.
[79] J. Kilian. A note on efficient zero-knowledge proofs and arguments

(extended abstract). May 1992.
[80] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jack-

son, and Virgil Gligor. Accountable key infrastructure (AKI) a pro-
posal for a public-key validation infrastructure. In WWW, 2013.

https://www.cloudflare.com/dns/dnssec/ecdsa-and-dnssec/
https://www.cloudflare.com/dns/dnssec/ecdsa-and-dnssec/
https://stats.dnssec-tools.org/
https://stats.dnssec-tools.org/
https://domainnamestat.com/statistics/tldtype/generic
https://domainnamestat.com/statistics/tldtype/generic
www.eff.org/sovereign-keys
https://github.com/certbot/certbot
https://github.com/certbot/certbot
https://eprint.iacr.org/2023/1503
https://www.eff.org/deeplinks/2011/09/post-mortem-iranian-diginotar-attack
https://www.eff.org/deeplinks/2011/09/post-mortem-iranian-diginotar-attack
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines
https://blog.aayushg.com/zkemail/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://notes.valdikss.org.ru/jabber.ru-mitm/
https://notes.valdikss.org.ru/jabber.ru-mitm/
https://ianix.com/pub/dnssec-outages.html
https://github.com/iden3/circom
https://github.com/iden3/snarkjs

nope: Strengthening Domain Authentication with Succinct Proofs SOSP ’24, November 4–6, 2024, Austin, TX, USA

[81] Eric Kinnear, Patrick McManus, Tommy Pauly, Tanya Verma, and
Christopher A. Wood. Oblivious DNS Over HTTPS. Internet-
Draft draft-pauly-dprive-oblivious-doh-06, Internet Engineering Task
Force, 2021.

[82] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark:
a framework for efficient verifiable computation. In IEEE Symposium

on Security and Privacy, 2018.
[83] Michael Kranch and Joseph Bonneau. Upgrading HTTPS in mid-air:

An empirical study of strict transport security and key pinning. In
NDSS, 2015.

[84] Murat Yasin Kubilay, Mehmet Sabir Kiraz, and Hacı Ali Mantar. Cer-
tLedger: A new PKI model with Certificate Transparency based on
blockchain. Computers & Security, 85, 2019.

[85] Adam Langley. DNSSEC authenticated HTTPS in Chrome. Impe-
rial Violet, June 2011. https://www.imperialviolet.org/2011/06/16/

dnssecchrome.html.
[86] Adam Langley. Enhancing digital certificate security. Google Se-

curity Blog, April 2013. https://security.googleblog.com/2013/01/

enhancing-digital-certificate-security.html.
[87] Adam Langley. Maintaining digital certificate security. Google

Security Blog, July 2014. https://security.googleblog.com/2015/03/

maintaining-digital-certificate-security.html.
[88] Adam Langley. Why not DANE in browsers. Imperial Violet, January

2015. https://www.imperialviolet.org/2015/01/17/notdane.html.
[89] Robin Larrieu. Fast finite field arithmetic. PhD thesis, Université

Paris-Saclay, 2019.
[90] Jan Lauinger, Jens Ernstberger, Andreas Finkenzeller, and Sebastian

Steinhorst. Janus: Fast privacy-preserving data provenance for tls
1.3. Cryptology ePrint Archive, Paper 2023/1377, 2023.

[91] Ben Laurie and Emilia Kasper. Revocation transparency. Google

Research, September, 33, 2012.
[92] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Trans-

parency. RFC 6962, June 2013.
[93] Ben Laurie, Adam Langley, Emilia Kasper, Eran Messeri, and Rob

Stradling. Certificate Transparency Version 2.0. RFC 9162, December
2021.

[94] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin,
Bruce Maggs, Alan Mislove, Aaron Schulman, and Christo Wilson.
An end-to-end measurement of certificate revocation in the web’s
PKI. In IMC, 2015.

[95] Ning Luo, Chenkai Weng, Jaspal Singh, Gefei Tan, Ruzica Piskac, and
Mariana Raykova. Privacy-preserving regular expression matching
using nondeterministic finite automata. Cryptology ePrint Archive,
Paper 2023/643, 2023.

[96] Moxie Marlinspike. Convergence. convergence.io, 2011.
[97] Moxie Marlinspike. Trust Assertions for Certificate Keys. Internet-

Draft draft-perrin-tls-tack-02, Internet Engineering Task Force, Janu-
ary 2013. Work in Progress.

[98] Matter Labs. bellman_ce. https://github.com/matter-labs/bellman,
2023.

[99] Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien, Chris Thompson,
Kevin Yeo, and Emily Stark. SoK: SCT auditing in Certificate Trans-
parency. PETS, 2022.

[100] Silvio Micali. Computationally sound proofs. SIAM Journal on Com-

puting, 30(4):1253–1298, 2000.
[101] Peter L. Montgomery. Modular multiplication without trial division.

Mathematics of Computation, 44:519–521, 1985.
[102] National Institute of Standards and Technology. Digital Signature

Standard (DSS), feb 2023.
[103] Zachary Newman. Reducing Trust in Automated Certificate Author-

ities via Proofs-of-Authentication. arXiv preprint arXiv:2307.08201,
2023.

[104] Andrija Novakovic and Kobi Gurkan. Groth16 malleability. https:
//geometry.xyz/notebook/groth16-malleability, 2022.

[105] Magnus Nyström and Burt Kaliski. PKCS #10: Certification Request
Syntax Specification Version 1.7. RFC 2986, November 2000.

[106] Marten Oltrogge, Yasemin Acar, Sergej Dechand, Matthew Smith, and
Sascha Fahl. To Pin or Not to Pin—Helping App Developers Bullet
Proof Their TLS Connections. In USENIX Security, 2015.

[107] OpenSSL. OpenSSL. https://github.com/openssl/openssl, 2024.
[108] OpenSSL. OpenSSL asn1parse. https://docs.openssl.org/1.1.1/man1/

asn1parse/, 2024.
[109] Alex Ozdemir, Riad Wahby, Barry Whitehat, and Dan Boneh. Scaling

verifiable computation using efficient set accumulators. In USENIX

Security, 2020.
[110] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinoc-

chio: Nearly practical verifiable computation. In IEEE Symposium on

Security and Privacy, 2013.
[111] Riva Richmond. An Attack Sheds Light on Internet Security Holes.

The New York Times, April 2011.
[112] Roman Semenov. zkUtil. https://github.com/poma/zkutil, 2021.
[113] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends.

Resource Records for the DNS Security Extensions. RFC 4034, March
2005.

[114] Michael Rosenberg, JacobWhite, Christina Garman, and IanMiers. zk-
creds: Flexible Anonymous Credentials from zkSNARKs and Existing
Identity Infrastructure. In IEEE Security and Privacy, 2023.

[115] Lorenz Schwittmann, Matthäus Wander, and Torben Weis. Domain
impersonation is feasible: a study of CA domain validation vulnera-
bilities. In IEEE EuroS&P, 2019.

[116] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs
without trusted setup. In CRYPTO, 2020.

[117] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan
Parno, andMichaelWalfish. Resolving the conflict between generality
and plausibility in verified computation. In Eurosys, 2013.

[118] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup
singularity with Lasso. Cryptology ePrint Archive, Paper 2023/1216,
2023.

[119] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J.
Blumberg, and Michael Walfish. Taking proof-based verified compu-
tation a few steps closer to practicality. In USENIX Security, 2012.

[120] Haya Shulman and Michael Waidner. One key to sign them all
considered vulnerable: Evaluation of DNSSEC in the internet. In
NSDI, 2017.

[121] Ryan Sleevi. Sustaining Digital Certificate Security. Google Secu-
rity Blog, October 2015. https://security.googleblog.com/2015/10/

sustaining-digital-certificate-security.html.
[122] Trevor Smith, Luke Dickinson, and Kent Seamons. Let’s revoke:

Scalable global certificate revocation. In NDSS, 2020.
[123] Sooel Son and Vitaly Shmatikov. The hitchhiker’s guide to DNS cache

poisoning. In ICST, 2010.
[124] Emily Stark, Joe DeBlasio, and Devon O’Brien. Certificate trans-

parency in Google Chrome: Past, present, and future. IEEE Security

& Privacy, 19(6), 2021.
[125] Michael StJohns. Automated Updates of DNS Security (DNSSEC)

Trust Anchors. RFC 5011, September 2007.
[126] Ernst G. Straus. Addition chains of vectors (problem 5125). American

Mathematical Monthly, 71:806–808, 1964.
[127] Andrew Sutherland. Elliptic curves. https://ocw.mit.edu/courses/18-

783-elliptic-curves-spring-2021, 2021.
[128] Justin Thaler. Proofs, Arguments, and Zero-Knowledge. http://

people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html, 2020.
[129] Mikhail Volkhov. Malleable Zero-Knowledge Proofs and Applications.

PhD thesis, University of Edinburgh, 2023.
[130] Riad S. Wahby, Srinath Setty, Zuocheng Ren, Andrew J. Blumberg,

and Michael Walfish. Efficient RAM and control flow in verifiable
outsourced computation. In NDSS, 2015.

https://www.imperialviolet.org/2011/06/16/dnssecchrome.html
https://www.imperialviolet.org/2011/06/16/dnssecchrome.html
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.html
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.html
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://www.imperialviolet.org/2015/01/17/notdane.html
convergence.io
https://github.com/matter-labs/bellman
https://geometry.xyz/notebook/groth16-malleability
https://geometry.xyz/notebook/groth16-malleability
https://github.com/openssl/openssl
https://docs.openssl.org/1.1.1/man1/asn1parse/
https://docs.openssl.org/1.1.1/man1/asn1parse/
https://github.com/poma/zkutil
https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html
https://security.googleblog.com/2015/10/sustaining-digital-certificate-security.html
https://ocw.mit.edu/courses/18-783-elliptic-curves-spring-2021
https://ocw.mit.edu/courses/18-783-elliptic-curves-spring-2021
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html

SOSP ’24, November 4–6, 2024, Austin, TX, USA DeStefano et al.

[131] Michael Walfish and Andrew J. Blumberg. Verifying computations
without reexecuting them: from theoretical possibility to near practi-
cality. Communications of the ACM, 58(2), 2015.

[132] DanWendlandt and Adrian Perrig. Perspectives: Improving SSH-style
Host Authentication with Multi-Path Probing. In USENIX Annual

Technical Conference, 2008.
[133] Pengcheng Xia, Haoyu Wang, Zhou Yu, Xinyu Liu, Xiapu Luo, and

Guoai Xu. Ethereum Name Service: the Good, the Bad, and the Ugly.
arXiv preprint arXiv:2104.05185, 2021.

[134] Collin Zhang, Zachary DeStefano, Arasu Arun, Joseph Bonneau, Paul
Grubbs, and Michael Walfish. Zombie: Middleboxes that don’t snoop.
In NSDI, 2024.

[135] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and
Ari Juels. DECO: Liberating web data using decentralized oracles for
TLS. In ACM CCS, 2020.

[136] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopou-
los, and Charalampos Papamanthou. vSQL: Verifying arbitrary SQL
queries over dynamic outsourced databases. In IEEE Symposium on

Security and Privacy, 2017.
[137] Shuhao Zheng, Zonglun Li, Junliang Luo, Ziyue Xin, and Xue Liu.

IDEA-DAC: Integrity-Driven Editing for Accountable Decentralized
Anonymous Credentials via ZK-JSON. Cryptology ePrint Archive,
Paper 2024/292, 2024.

	Abstract
	1 Introduction and motivation
	2 Background
	2.1 Server authentication today
	2.2 DNS, DNSSEC, dane, and dce
	2.3 Succinct proofs

	3 Design of nope
	3.1 Threat model, security objectives, core protocol
	3.2 Constructing and verifying nope proofs
	3.3 Analysis

	4 Representing DNS parsing efficiently
	4.1 R1CS
	4.2 Framework and motivation
	4.3 Mask primitive

	5 Representing cryptography efficiently
	5.1 Big-integer arithmetic
	5.2 Faster elliptic curve operations
	5.3 Fewer EC operations in ECDSA

	6 Protocol considerations
	7 Implementation
	8 Experimental evaluation
	8.1 Impact on client latency in TLS handshake
	8.2 Costs of nope certificate issuance
	8.3 Effect of nope's constraint representations
	8.4 nope in the certificate chain
	8.5 Summary

	9 Other related work
	10 Concluding discussion
	A nope-managed
	B Other string primitives in constraints
	B.1 nope's string slicing primitive
	B.2 nope's string scan primitive

	C Fewer EC point operations in ECDSA
	D SAN encoding example
	References

